LEYBOLD ${ }^{\circ}$

PHYSICS EXPERIMENTS

- MECHANICS
- HEAT
- ELECTRICITY
- ELECTRONICS
- OPTICS
- ATOMIC AND NUCLEAR PHYSICS
- SOLID-STATE PHYSICS

PHYSICS EXPERIMENTS IN TRUSTED LEYBOLD QUALITY

Experiments have become an indispensable part of education. Indispensable because the combination of theoretical knowledge with experimental learning sessions ensures sustainable and successful learning.

We provide a wide range of high-quality experiments from all areas of physics. Our proven LEYBOLD quality guarantees durability and safety during the complete experiment setup.

MORE THAN

 500 EXPERIMENTS IN VARIOUS PHYSICS RANGES
FURTHER EXPERIMENTS

These are available in several versions (e.g. with or without PC support) which can be adapted to the time requirements and student's level of knowledge. The experiments are supported by instructions, which include clear step by step guidance, sample measurements and safety advices.

We will advise you personally and demonstrate our experiments for you.

Have fun experimenting!

INTRODUCTION

LD DIDACTIC - ABOUT US II-III
LEYBOLD STANDARD LAB PROPOSALS IV-V
HIGHLIGHT PHYSICS EXPERIMENTS VI-VII
LEYBOLD X-RAY SYSTEM VIII-IX
LEYLAB - EASY LAB MANAGEMENT X-XI
EXPERIMENT INSTRUCTIONS + LAB DOC EDITOR XII-XIII
CASSY SYSTEM - DATA LOGGING \& MEASUREMENT XIV-XV
ONE-STOP SOLUTION - FROM CONSULTING TO TRAINING XVI-XVII
OVERVIEW OF ALL EXPERIMENTS WITH PAGES XVIII-XIX
HOW TO USE THIS CATALOG XX
EXPERIMENTS
P1 MECHANICS1
P2 HEAT 57
P3 ELECTRICITY 78
P4 128
ELECTRONICSOPTICS142
P6 ATOMIC AND NUCLEAR PHYSICS
P7 SOLID-STATE PHYSICS 231
REGISTER 246

LD DIDACTIC GROUP experimentation IS OUR PASSION

1968

X-ray apparatus

EXPERIMENTS FOR STUDENTS AND DEMONSTRATION FOR MORE THAN 170 YEARS

THE SECRET OF SUCCESS IS THE MIX OF THEORY \& PRACTICE
Experimentation has always been a core competence of scientists and ensures to really understand physic phenomena.

The planning, carrying out and recording of experiments is an important element of a well-founded education in science. In order to reinforce newly acquired knowledge, experiments must be well matched to the theory.

A COMPETITIVE ADVANTAGE IN A HIGHLY COMPETITIVE WORLD

We believe in the importance of education as a fundamental driver of personal, national and global development. In a highly specialized world, knowledge has become a decisive factor: skilled personnel are in greater demand than ever. Investing in the practical training of your students, you equip them with important science skills that the labor market requires.

THE PASSION FOR TEACHING EQUIPMENT IS IN OUR DNA

The LD DIDACTIC Group is a leading global manufacturer of high quality teaching and training system. From the very beginning in 1850 we at LEYBOLD concentrate on how to make academic content understandable and tangible for students at different levels of education. Therefore we are proud that for generations our training and educational systems have made a significant contribution to knowledge transfer in natural sciences.
However, for more than 170 years of experience we have found that you can achieve a lot when keeping pace with customer needs: we continuously challenge ourselves to preserve our high quality standards and develop our products and services in line with changing curricula and new technologies.

THE X-RAY APPARATUS ALWAYS STATE OF THE ART

 A perfect example for the spirit of innovation at LD DIDACTICAlready one year after the discovery of the X-rays LD DIDACTIC offered the first equipment for this new topic of physics. During the time, the device was improved in handling, performance and safety. The newest generation supplies even digital teaching such as fully digital imaging techniques as well as live data distribution to the mobile devices of the students during the experiment.

Over 100,000 schools, colleges \&t universities in more than 80 countries trust our solutions, including top universities such as Harvard, Oxford, Cambridge, Stanford, Yale, Toronto, Tsinghua \&t Singapore.

170 YEARS EXPERIENCE, BASED ON EDUCATION SYSTEM IN GERMANY

YOU PROVIDE

RELEVANT AND EASY-TO-USE SOLUTIONS TO STUDENTS

YOU GET PREMIUM QUALITY

GERMAN ENGINEERING

- Developed and designed in Germany
- Quality management certified to ISO 9001

■ Highly specialized development team with didactic background

LEYBOLD STANDARD LAB PROPOSALS YOUR COMPLETE LEYBOLD PHYSICS LAB

Not sure about the selection of experiments for your department? LD DIDACTIC created four physics standard lab proposals for different purposes based on our 170 years of cooperation with leading universities worldwide. The collection of experiments include entire experiment set-ups, data logging devices and software, experiment instructions and all consumables needed. Furthermore the laboratories contain LEYBOLDs digital tools for lab management, digital preparation of laboratory work and classes and the use of digital media.

HIGH RELEVANCE
1
COMPLETE
LABORATORY
READY TO START WITH
LITILE MAINTENANCE

COMPILATION OF EXPERIMENTS, CURRICULA-COMPLIANT

4
6
PERFECT FOR STUDENTS WORK

PHYSICS STANDARD LAB PROPOSAL FOR STUDENTS OF CHEMISTRY, BIOLOGY \& OTHER SUBJECTS

Small selection of fundamental experiments out of mechanics and heat for students with a different major subject like chemistry, biology, geology, pharmacy or computer sciences. Number and style are selected in such a way, that they can be performed in one term to learn principles of experimentation.

Go directly to physics standard lab proposal for students of chemistry, biology, etc.:

PHYSICS STANDARD LAB PROPOSAL FOR ENGINEERS

Selection of physics experiments under the aspect of application in technology (physics of electrical machines, wind tunnel etc.). Most of the experiments can be enhanced by other technical fields like different insulation for houses or design and 3D-printing of airfoils.

PHYSICS EXPERIMENTS HIGHLIGHTS

Explore more than 500 experiment set-ups ready-to-use and covering all relevant topics within the world of Physics. Developed in close cooperation with teachers, professors and students around the world, the collection matches all international curricular and can be used for bachelor and master courses.
All experiment set-ups are special tailor-made compilations including all necessary equipment, state-of-the-art measurement technology and software. Within our broad experiment spectrum there are some that are special and unique.

MECHANICS

AERO- AND HYDRODYNAMICS

HEAT

HEAT TRANSFER

THERMAL CONDUCTIVITY

P2.2.1.2

- Learning thermal conductivity at everday situation of house insulation
- Different measurement techniques in comparison
- Students have the possibilities to design their own materials and test it on their insulation qualities

PAGE 62

ELECTRICITY
ELECTROMAGNETIC OSCILLATIONS AND WAVES

DECIMETER WAVE SYSTEM

P3.7.2.2

- Macroscopic experience of wave phenomena of electromagnetic waves
- Polarization and change of wavelength in different dieletrics
- Application of data transmission

PAGE 119

ATOMIC AND NUCLEAR PHYSICS

NUCLEAR PHYSICS

RUTHERFORD SCATTERING

P6.5.2.1

- Didactic set-up, e.g. direct measurement of counting rate versus scattering scale
- Simple and safe handling
- Instruction sheet with detailed sample measurement results
- Crucial experiment in understand matter

PAGE 223

SOLID-STATE PHYSICS
CONDUCTION PHENOMENA

SUPERCONDUCTIVITY

P7.2.6. 1

- Simple set-up for examination of the superconductivity and the Curie temperature
- Easy handling: just add liquid nitrogen and start measuring
- Compatible to nearly all interface systems

PAGE 242

LEYBOLD X-RAY SYSTEM
 SAFE X-RAY APPARATUS WITH TUBE CHANGING TECHNOLOGY

The LEYBOLD X-ray system sets new standards and offers incredible options in students education in its $6^{\text {th }}$ generation starting back in 1896.

X-RAY APPARATUS

The X-ray apparatus is available in two variants - as a basic apparatus or as a complete apparatus with a Mo tube, goniometer and NaCl monocrystal. If you wish to use other tubes, the X-ray basic apparatus is the most flexible solution.
You can extend the X-ray apparatus with a drawer for your accessories irrespective of this.

GONIOMETER

No matter whether you are interested in Bragg spectra, X-ray energy spectra or computed tomography, you will be happy with the precision and high resolution of the goniometer.

TUBES

In addition to the Mo tube, there are other tubes, which are more suitable for special areas of application, e.g. Cu tube for Debye-Scherrer diagrams, Ag tube for X-ray fluorescence due to its high energy K-lines, W or Au tubes for radiation and computed tomography due to their high intensity.

CASSY LAB 2 FOR X-RAY APPARATUS

CASSY Lab 2 is enabling comprehensive measurements and the display of diagrams like Bragg spectra.
The software also enables live distribution of the spectra during measurements to digital devices of students. Free formulas for arbitrary conversions of the recorded spectra, the support of the high resolution of the HD Accessory, X-ray and the integrated help functionality with experiment examples are just some outstanding features of CASSY Lab 2.

X－RAY ENERGY DETECTOR
The X－ray energy detector exposes energy－dispersive X－ray spectra with the CASSY system．Using the X－ray energy spectra，various chemical elements can be easily distinguished by means of their characteristic X－ray radiation and their mass fraction can also be determined．This also confirms the Compton effect．

COMPUTED TOMOGRAPHY MODULE

The X－ray apparatus has a laterally installed fluorescent screen，on which X－rays can be seen directly．The com－ puted tomography module captures this visible X－ray image and the software provided there controls the rotation of the object in the X－ray apparatus through 360° and carries out the back projection of the X －ray image for the real－time 3D reconstruction．

BRAGG SPECTRA

With the complete apparatus with a Mo tube， you have everything you need for capturing your first Bragg spectrum．Other available monocrystals and／or X－ray tubes offer several possible variations．

Please find a selection of our X－ray experiments on the following pages：

X－RAY PHYSICS

P6．3．1－7
pages 207－217

X－RAY SCATTERING

P7．1．2

pages 233－234
X－RAY FLUORESCENCE ANALYSIS P7．5．1 page 245

COMPUTED TOMOGRAPHY PRO

If the resolution of the computed tomography module is insufficient，the X－ray image sensor provides the solu－ tion with its megapixel resolution and its 14 －bit grey scale．With this，voxel resolutions up to an edge length of below $50 \mu \mathrm{~m}$ are possible．The X－ray image sensor also provides a comfort－ able and fast solution for Laue and Deybe－Scherrer diagrams．

HD accessory

With the HD accessory consisting of a collimator and counter tube holder with narrow gaps and a new，high－resolution soft－ ware，the angular resolution of the goniometer increases to 0.01° ．Bragg spectra with a 4－fold resolution are possible with this．

GOLD TUBE

The gold tube is the LEYBOLD tube with the highest intensity．It is particularly suitable for capturing X－ray images， Laue diagrams or computed tomograms．
In addition to the Tungsten tube，it is also the only tube whose Bragg spectra consist of L －lines．

LEYLAB

ONLINE-PORTAL FOR ORGANIZATION \&t MANAGEMENT OF EXPERIMENTS, DEVICES AND LITERATURE

ANYTIME \& ANYWHERE

EXPERIMENT COLLECTION

- Access to the whole LD experiments catalog with all the relevant information for every experiment
- Find desired experiment quickly and reliably

■ Set-up own experiment collection
■ Easily expand the LD experiments

- Easily create own, new experiments
- Intelligently link devices
- Additional documents are where you need them for the experiment
- Collection of all kinds of documents like PDFs, videos or links to websites or apps; can be shared with students

LEYLAB

- Complete online portal
- Central organization \&t management of experiments and devices
- No installation needed

■ For all platforms, tablets, smartphones, laptops or PCs

- Video tutorials included
- Access at anytime from anywhere

inventory at a glance

DEVICE COLLECTION

- Direct overview of all available devices including quantity and storage location
- Save time searching for equipment
- Detailed information on every item
- Easy inventory of the complete collection
- LD devices and other manufacturers' devices
- With bar code functionality
- Clear inventory management with borrowing and return function

CENTRALLY AVAILABLE

LITERATURE

- Purchased LD literature will be visible at related experiment
- Can be easily shared with all students
- Own experiment instructions can be included

ALL IN ONE PLACE
 LICENSE MANAGEMENT

- Manage all LD software and literature
- License codes are safely stored in the cloud, so they are not lost and can be used to install software on new hardware

SHARE INFORMATION

GUEST ACCESS \& COLLABORATION

- Third party access to LeyLab is possible
- Collaborate with colleagues
- User administration with different access levels
- Share information with other lecturers from other institutes
- Enables a centralized organisation (e.g. by ministry) of many institutes and therefore a more efficient use of equipment, documents, etc.)

LEYLAB - ONLINE PORTAL

- School/college/university license
- For any number of users
- Unlimited inventory of devices \&t experiments
- Account can be deleted completely at any time
- Numerous experiment instructions are additionally available

EXPERIMENT INSTRUCTIONS PERFECT SUPPORT FOR YOU AND YOUR STUDENTS

Our experiment instructions are easy to use, to distribute and to integrate into your teaching. They are tailored to requirements, curriculum-compliant and intuitive.

TIME-SAVING

PREPARATION

- LeyLab contains all purchased LD experiment instructions, can be accessed from anywhere
- All information is available directly on the experiment - literature, needed devices and location, extra information
- List of conductable experiments with existing devices can be downloaded

- Experiment instructions contains detailed accompanying information with experiment objectives, evaluation and further information
- Easy sharing of experiment instruction
- Free-of-charge online updates of experiment instructions in LeyLab

EASY-TO-USE AND FUNCTIONAL EXPERIMENTING

- Clearly structured worksheets with hints and illustrations

■ Step-by-step guide to perform experiment and warning notices for safe experimentation

- Real example measurement results and diagrams for students own monitoring

EXPERIMENT INSTRUCTIONS

Experiment descriptions from all areas of physics for advanced secondary level or for practical exercises in colleges and universities.

- Product key for online use in LeyLab
- Complete package of all experiment instructions within this catalog

597310 LIT: Physics leaflets, digital (product key)

http:www.leybold-shop.com/597310

LAB DOCS EDITOR CREATE YOUR OWN DIGITAL EXPERIMENT INSTRUCTIONS

Lab Docs Editor is an easy-to-use tool that revolutionizes the editing of experiment instructions. Without any knowledge of HTML, the Lab Docs Editor allows the creation of digital and interactive experiment instructions.

- Create instruction ©t assignments; integrate \&t adapt interactive diagrams and tables; add text and response fields
- Insert images, vector graphics, hyperlink, etc.
- Prepare and create material lists
- Create formulas in LaTeX syntax

CASSY - THE SYSTEM

 DATA LOGGING \&t MEASUREMENT

CASSY - ALWAYS THE RIGHT SOLUTION

Whether you want to record the measured data from the experiments with or without a computer, or even want to include tablets in your digital class, CASSY has been developed for every need and can be flexibly expanded. You will always find the right combination of measuring device, sensor and measuring software for your specific requirements.

ENTIRE EXPERIMENT SET-UPS WITH MATCHING MEASURING DEVICES, SENSORS AND SOFTWARE

For each experiment, the recommended CASSY device and sensor is included in the experiment set-up for ideal data logging of the specific experiment.

With our selection of the measuring equipment for each single experiment we make sure that the devices perfectly meet the requirements of the measurement ranges and the measurement accuracy with no overpowering. While designing and testing every experiment set-up, we furthermore include factors such as technical conditions and ease of use for students into consideration.

If you want to acquire several experiments for your laboratory, we will be happy to advise you on how to optimize the measuring system.
YOU GET EXPERIMENT SET-UPS THAT PERFECTLY WORK!

Basic device		No. of sensor sockets	No. of channels for simultaneous measurement	Integrated relais	Integrated ability to measure	Integrated display	Data storage in the unit	Computer interface	Supported sensor types	Software support
	Sensor-CASSY 2 (524 013)	2	4	YES	U, I, P, E	NO	NO	USB, Wifi adapter	CASSY sensors S	CASSY App CASSY Lab 2 MATLAB LabVIEW
$\binom{320}{0}$	Mobile-CASSY 2 Wifi (524 005W)	2	3	NO	U, I, P, E \& temperature	YES	YES	Integrated Wifi, USB, standalone	CASSY sensors S, CASSY sensors M	CASSY App CASSY Lab 2 MATLAB LabVIEW
	Pocket-CASSY 2 Bluetooth (524 018)	1	1	NO	NONE	NO	NO	Bluetooth, USB	CASSY sensors S	$\begin{aligned} & \text { CASSY App } \\ & \text { CASSY Lab } 2 \\ & \text { MATLAB } \\ & \text { LabVIEW } \end{aligned}$
	Universal measurement instrument physics (531 835)	1	1	NO	NONE	YES	NO	USB, standalone	CASSY sensors S (partial)	CASSY Lab 2 MATLAB LabVIEW

CASSY LAB 2

PROVEN SOFTWARE FOR RECORDING \& EVALUATING MEASUREMENT DATA FROM ALL CASSY DEVICES

- Supports all CASSY devices and sensors
- Including measurement server for the distribution of live measurements, table and diagram as well as measurement files on tablets or smartphones, etc.
- One licence for use on any number of PCs in a school, college or university
- Automatic detection and display of all CASSYs, sensors and sensor boxes
- Automatic loading of typical experiment parameters
- Operable experiment examples included
- Manual or automatic recording of measured values
- Measurement data can be displayed in the form of analog/digital instruments, tables and/or graphs (also simultaneously, with user-definable axis assignment)
- Powerful evaluation functions including various fits (straight line, parabola, hyperbola, exponential function, free fitting), integrals, diagram labelling, calculation of user-definable formulas, differentiation, integration, Fourier transforms
- Using a QR code, students can follow measurement directly on their smartphone/tablet and then evaluate the measured data

THE LD SOLUTION

MUCH MORE THAN HARDWARE

LEYBOLD DIDACTIC ACADEMY THE PATH TO TEACHING EXCELLENCE

CUSTOMIZED

TRAINING PROGRAMS TO ENSURE

 SUSTAINABLE FACILITIES AND RESOURCESSpecialized training programs for teachers, lecturers and trainers
■ Methodological, didactic and technical training

- Content and training focus is chosen on requirements
- Practical work is central point, incl. whole process to perform experiments

■ Organization Et maintenance of equipment

- Seminar has external parts at well-known schools, universities and institutions
- Insights into German didactic standards and trends
- Comprehensive guides and seminar documentation
- Possibility to achieve qualification to train other teachers, lecturers or trainers

REFERENCE PROJECT MEXICO

The university "Universidad Autónoma del Estado de Hidalgo" achieved a higher educational level for teachers in implementing experiments in classes through practical lab work and theory. They also obtained sustainable know-how in lab management and the all related work flow processes.

The seminar took place in the labs at LEYBOLD, the University of Cologne and an extracurricular place of learning.

P1.5 Oscillations Simple and compound pendulum, harmonic occillations, torsion pendulum, coupling of oscillations

HOW TO USE THIS CATALOG STRUCTURE OF THE PAGE

P1 MECHANICS

P1.1 MEASURING METHODS 3
P1.2 FORCES 6
P1.3 TRANSLATIONAL MOTIONS OF A MASS POINT 12
P1.4 ROTATIONAL MOTIONS OF A RIGID BODY 21
P1.5 OSCILLATIONS 27
P1.6 WAVE MECHANICS 34
P1.7 ACOUSTICS 39
P1.8 AERO- AND HYDRODYNAMICS 49

P1 MECHANICS

P1.1 MEASURING METHODS
P1.1.1 Measuring lengths 3
P1.1.2 Measuring volume and density 4
P1.1.3 Determining the gravitational constant 5
P1.2 FORCES
P1.2.1 Static effects of forces 6
P1.2.2 Force as vector 7
P1.2.3 Lever 8
P1.2.4 Block and tackle 9
P1.2.5 Inclined plane 10
P1.2.6 Friction 11
P1.3 TRANSLATIONAL MOTIONS OF A MASS POINT
P1.3.2 One-dimensional motions on Fletcher's trolley 12-13
P1.3.3 One-dimensional motions on the linear air track 14
P1.3.4 Conservation of linear momentum 15-17
P1.3.5 Free fall 18-19
P1.3.6 Angled projection 20
P1.4 ROTATIONAL MOTIONS OF A RIGID BODY
P1.4.1 Rotational motions 21
P1.4.2 Conservation of angular momentum 22
P1.4.3 Centrifugal force 23
P1.4.4 Motions of a gyroscope 24
P1.4.5 Moment of inertia 25
P1.4.6 Conservation of Energy 36

P1.5 OSCILLATIONS

P1.5.1 Simple and compound pendulum 27-28
P1.5.2 Harmonic oscillations 29
P1.5.3 Torsion pendulum 30-31
P1.5.4 Coupling of oscillations 32-33

P1.6 WAVE MECHANICS

P1.6.1 Transversal and longitudinal waves 34
P1.6.2 Wave machine 35
P1.6.3 Circularly polarized waves 36
P1.6.4 Propagation of water waves 37
P1.6.5 Interference of water waves 38

P1.7 ACOUSTICS

P1.7.1 Sound waves 39
P1.7.2 Oscillations of a string 40
P1.7.3 Wavelength and velocity of sound 41-43
P1.7.4 Reflection of ultrasonic waves 44
P1.7.5 Interference of ultrasonic waves 45
P1.7.6 Acoustic Doppler effect 46
P1.7.7 Fourier analysis 47
P1.7.8 Ultrasound in media 48
P1.8 AERO- AND HYDRODYNAMICS
P1.8.2 Bouyancy 49
P1.8.3 Viscosity 50-52
P1.8.4 Surface tension 53
P1.8.5 Introductory experiments on aerodynamics 54
P1.8.6 Measuring air resistance 55
P1.8.7 Measurements in a wind tunnel 56

P.1.1.1.3

MEASURING LENGTHS

P1.1.1.1
Using a caliper gauge with vernier
P1.1.1.2
Using a micrometer screw
P1.1.1.3
Using a spherometer to determine bending radii

Using a spherometer to determine bending radii (P1.1.1.3)

Cat. No.	Description	「 「 í	$\stackrel{\text { }}{\text { ¢ }}$	
31154	Precision vernier callipers	1		
31183	Precision micrometer		1	
55035	Copper resistance wire, 0.2 mm diam., 100 m		1	
55039	Brass resistance wire, 0.5 mm diameter, 50 m		1	
31186	Spherometer			1
460291	Plane mirror, $11.5 \mathrm{~cm} \times 10 \mathrm{~cm}$			1
662092	Cover slips			1
664154	Watch glass dish $80 \mathrm{~mm} \emptyset$			1
664157	Watch glass dish $125 \mathrm{~mm} \emptyset$			1

The caliper gauge, micrometer screw and spherometer are precision measuring instruments; their use is practiced in hands on measuring exercises.
In the experiment P1.1.1.1, the caliper gauge is used to determine the outer and inner dimensions of a test body. The vernier scale of the caliper gauge increases the reading accuracy to $1 / 20 \mathrm{~mm}$.
Different wire gauges are measured in the experiment P1.1.1.2. In this exercise a fundamental difficulty of measuring becomes apparent, namely that the measuring process changes the measurement object. Particularly with soft wire, the measured results are too low because the wire is deformed by the measurement.
The experiment P1.1.1.3 determines the bending radii R of watch-glasses using a spherometer. These are derived on the basis of the convexity height h at a given distance r between the feet of the spherometer, using the formula

$$
R=\frac{r^{2}}{2 h}+\frac{h}{2}
$$

Vertical section through the measuring configuration with spherometer Left: object with convex surface, Right: Object with concaves surface (P1.1.1.3)

MECHANICS
MEASURING METHODS

MEASURING VOLUME AND DENSITY

P1.1.2. 1

Determining the volume and density of solids

P1.1.2.2

Determining the density of liquids using the plumb bob

P1.1.2.3

Determining the density of liquids using the pycnometer according to Gay-Lussac

P1.1.2.4
Determining the density of air

Determining the density of air (P1.1.2.4)

Cat. No.	Description		$\begin{aligned} & \underset{\sim}{\Sigma} \\ & \underset{\sim}{\Sigma} \end{aligned}$	$\stackrel{\text { n }}{\stackrel{1}{1}}$	$\stackrel{+}{\stackrel{+}{\square}}$
36204	Overflow vessel	1			
59008	Measuring cylinder 100 ml	1			
59006	Plastic beaker	1			
30948	Fishing line	1			
31154	Precision vernier callipers	1			
31505	Single-pan suspension balance 311	1		1	1
35252	Steel balls, 30 mm , set of 6	1			
36163	Cubes (2x) and ball (1x)	1			
59033	Gauge blocks, set of 2	1			
30942	Colouring, red, 10 g	1			
362025	Plumb bob		1		
315011	Hydrostatic balance		1		
31531	Set of weights, 10 mg to 200 g		1		
38221	Stirring thermometer $-10 \ldots+110^{\circ} \mathrm{C}$		1	1	
665754	Measuring cylinder 100 ml , with plastic base		2	2	
6719720	Ethanol, denaturated, 11		1	1	
666145	Gay-Lussac pycnometer, 50 ml			1	
37907	Sphere with 2 stopcocks, glass, 11				1
667072	Support ring for round flask, 250 ml , cork				1
37558	Hand vacuum pump				1

Depending on the respective aggregate state of a homogeneous substance, various methods are used to determine its density

$$
\begin{aligned}
& \rho=\frac{m}{V} \\
& m: \text { mass, } V: \text { volume }
\end{aligned}
$$

The mass and volume of the substance are usually measured separately.
To determine the density of solid bodies, a weighting is combined with a volume measurement. The volumes of the bodies are determined from the volumes of liquid which they displace from an overflow vessel. In the experiment P1.1.2.1, this principle is tested using regular bodies for which the volumes can be easily calculated from their linear dimensions.
To determine the density of liquids, the plumb bob is used in the experiment P1.1.2.2. The measuring task is to determine the densities of water-ethanol mixtures. The Plumb bob determines the density from the buoyancy of a body of known volume in the test liquid.
To determine the density of liquids, the pyknometer according to Gay-Lussac is used in the experiment P1.1.2.3. The measuring task is to determine the densities of water-ethanol mixtures. The pyknometer is a pear-shaped bottle in which the liquid to be investigated is filled for weighing. The volume capacity of the pyknometer is determined by weighing with a liquid of known density (e.g. water). In the experiment P1.1.2.4, the density of air is determined using a sphere of known volume with two stop-cocks. The weight of the enclosed air is determined by finding the difference between the overall weight of the air-filled sphere and the empty weight of the evacuated sphere.

DETERMINING THE GRAVITATIONAL CONSTANT

P1.1.3.1

Determining the gravitational constant with the gravitation torsion balance according to Cavendish - Measuring the excursion with a light pointer

P1.1.3.2

Determining the gravitational constant with the gravitation torsion balance according to Cavendish

- Recording the excursion and evaluating the measurement with the IR position detector and PC

Determining the gravitational constant with the gravitation torsion balance according to Cavendish - Measuring the excursion with a light pointer (P1.1.3.1)

Cat. No.	Description	$\stackrel{\Gamma}{\stackrel{-}{\square}}$	
332101	Gravitation torsion balance	1	1
471791	Diode laser, $635 \mathrm{~nm}, 1 \mathrm{~mW}$	1	
31327	Hand-held stop-watch, 60s/0.2s	1	
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	
30002	Stand base, V-shaped, small	1	
30103	Rotatable clamp	1	
30101	Leybold multiclamp	1	
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	
33211	IR position detector		1
46032	Optical bench with standardised profile, 1 m		1
460373	Optics rider, 60/50		1
460374	Optics rider, 90/50		1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm}$ Ø		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)		1

Oscillations of the gravitation torsion balance around the final equilibrium position SII (P1.1.3.1)

The heart of the gravitation torsion balance according to Cavendish is a lightweight beam horizontally suspended from a thin torsion band and having a lead ball with the mass $m_{2}=15 \mathrm{~g}$ at each end. These balls are attracted by the two large lead spheres with the mass $m_{1}=1.5 \mathrm{~kg}$. Although the attractive force

$$
F=G \cdot \frac{m_{1} \cdot m_{2}}{r^{2}}
$$

r : distance between sphere midpoints

is less than $10^{-9} \mathrm{~N}$, it can be detected using the extremely sensitive torsion balance. The motion of the small lead balls is observed and measured using a light pointer. Using the curve over time of the motion, the mass m_{1} and the geometry of the arrangement, it is possible to determine the gravitational constant G using either the end-deflection method or the acceleration method. In the end-deflection method, a measurement error of less than 5% can be achieved through careful experimenting. The gravitational force is calculated from the resting position of the elastically suspended small lead balls in the gravitational field of the large spheres and the righting moment of the torsion band. The righting moment is determined dynamically using the oscillation period of the torsion pendulum.
The acceleration method requires only about 1 min . observation time. The acceleration of the small balls by the gravitational force of the large spheres is measured, and the position of the balls as a function of time is registered.
In the experiment P1.1.3.1, the light pointer is a laser beam which is reflected in the concave reflector of the torsion balance onto a scale. Its position on the scale is measured manually point by point as a function of time.
The IR position detector (IRPD) enables automatic measurement of the motion of the lead balls in the gravitation torsion balance. The four IR diodes of the IRPD emit an infrared beam; the concave mirror on the torsion pendulum of the balance reflects this beam onto a row of 32 adjacent phototransistors. A microcontroller switches the four IR diodes on in sequence and then determines which phototransistor is illuminated each time. The primary S range of illumination is determined from the individual measurements. The IRPD is supplied complete with the demo version of CASSY Lab, for direct measurement and evaluation of the experiment P1.1.3.2 using a computer with Windows XP or higher. The system offers a choice of either the end-deflection or the acceleration method for measuring and evaluating.

STATIC EFFECTS OF FORCES

P1.2.1.1
Expansion of a helical spring
P1.2.1.2
Bending of a leaf spring
P.1.2.1.1

Expansion of a helical spring (P1.2.1.1)

Forces can be recognized by their effects. Thus, static forces can e.g. deform a body. It becomes apparent that the deformation is proportional to the force acting on the body when this force is not too great.
The experiment P1.2.1.1 shows that the extension s of a helical spring is directly proportional to the force F_{s}. Hooke's law applies:

$$
\begin{aligned}
& F_{s}=-D \cdot s \\
& D: \text { spring constant }
\end{aligned}
$$

The experiment P1.2.1.2 examines the bending of a leaf spring arrested at one end in response to a known force generated by hanging weights from the free end. Here too, the deflection is proportional to the force acting on the leaf spring.

FORCE AS VECTOR

P1.2.2.1
Composition and resolution of forces

Cat. No.	Description	-
301301	Adhesive magnetic board	1
314215	Circular dynamometer, 5 N	2
301331	Magnetic base with hook	1
35208	Helical spring $25 \mathrm{~N} / \mathrm{m}$	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1
34263	Weight 50 g	5
30101	Leybold multiclamp	4
68650	Metal plate	4
30044	Stand rod, $100 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	2
30107	Simple bench clamp	2

The nature of force as a vectorial quantity can be easily and clearly verified in experiments on the adhesive magnetic board. The point of application of all forces is positioned at the midpoint of the angular scale on the adhesive magnetic board, and all individual forces and the angles between them are measured. The underlying parallelogram of forces can be graphically displayed on the adhesive magnetic board to facilitate understanding.
In experiment P1.2.2.1, a force F is compensated by the spring force of two dynamometers arranged at angles α_{1} and α_{2} with respect to F. The component forces F_{1} and F_{2} are determined as a function of α_{1} and α_{2}. This experiment verifies the relationships

$$
F=F_{1} \cdot \cos \alpha_{1}+F_{2} \cdot \cos \alpha_{2}
$$

and
$0=F_{1} \cdot \sin \alpha_{1}+F_{2} \cdot \sin \alpha_{2}$

MECHANICS

FORCES

LEVER

P1.2.3.1
One-sided and two-sided lever
P1.2.3.2
Wheel and axle as a lever with unequal sides

Wheel and axle as a lever with unequal sides (P1.2.3.2)

Cat. No.	Description		
34260	Lever, 1 m	1	
34263	Weight 50 g	12	8
31445	Spring balance, 2 N	1	1
31446	Spring balance, 5 N	1	1
30002	Stand base, V-shaped, small	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1
30101	Leybold multiclamp	1	1
34275	Multiple pulley and moment disc		1

In physics, the law of levers forms the basis for all forms of mechanical transmission of force. This law can be explained using the higher-level concept of equilibrium of angular momentum.
The experiment P1.2.3.1 examines the law of levers:

$$
F_{1} \cdot x_{1}=F_{2} \cdot x_{2}
$$

for one-sided and two-sided levers. The object is to determine the force F_{1} which maintains a lever in equilibrium as a function of the load F_{2}, the load arm x_{2} and the power arm x_{1}.
The experiment P1.2.3.2 explores the equilibrium of angular momentum using a wheel and axle. This experiment broadens the understanding of the concepts force, power arm and line of action, and explicitly proves that the absolute value of the angular momentum depends only on the force and the distance between the axis of rotation and the line of action.

One-sided and two-sided lever (P1.2.3.1)

BLOCK AND TACKLE

P1.2.4.1
Fixed pulley, loose pulley and block and tackle as simple machines

Fixed pulley, loose pulley and block and tackle as simple machines (P1.2.4.1)

Cat. No.	Description	\square $\stackrel{+}{\square}$ $\stackrel{1}{2}$ \vdots
340911	Pulley $\emptyset 50 \mathrm{~mm}$, plug-in	2
340921	Pulley $\emptyset 100 \mathrm{~mm}$, plug-in	2
340930	Pulley bridge	2
340811	Plug-in axle	1
340851	Weight, 50 g	4
34087	Load hook	1
34089	Coupling plug 4 mm	1
31404	Support clip, for plugging in	2
31401	Dynamometer, tension and compression, 1.5 N	1
31402	Dynamometers, tension and compression, 3 N	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1
30129	Pointer, pair	1
68651	Cord	1
667017	Scissors 125 mm , round-ended	1
30121	Stand base MF	2
30125	Support block	2
666615	Universal bosshead	1
30126	Stand rod $25 \mathrm{~cm}, 10 \mathrm{~mm} \emptyset$	1
30127	Stand rod $50 \mathrm{~cm}, 10 \mathrm{~mm} \emptyset$	2

The fixed pulley, loose pulley as well as block and tackle are classic examples of simple machines. Experiments with these machines represent the most accessible introduction to the concept of work in mechanics.
In the experiment P1.2.4.1, the experiments like block and tackle are set up on the lab bench using a stand base MF. The pulleys are mounted virtually frictionfree in bearings.

INCLINED PLANE

P1.2.5.1
Inclined plane: force along the plane and force normal to the plane

P1.2.5.2

Determining the coefficient of static friction using the inclined plane

Inclined plane: force along the plane and force normal to the plane (P1.2.5.1)

The motion of a body on an inclined plane can be described most easily when the force exerted by the weight G on the body is vectorially decomposed into a force F_{1} along the plane and a force F_{2} normal to the plane. The force along the plane acts parallel to a plane inclined at an angle α, and the force normal to the plane acts perpendicular to the plane. For the absolute values of the forces, we can say:

$$
F_{1}=G \cdot \sin \alpha \text { and } F_{2}=G \cdot \cos \alpha
$$

This decomposition is verified in the experiment P1.2.5.1. Here, the two forces F_{1} and F_{2} are measured for various angles of inclination α using precision dynamometers.
The experiment P1.2.5.2 uses the dependency of the force normal to the plane on the angle of inclination for quantitative determination of the coefficient of static friction μ of a body. The inclination of a plane is increased until the body no longer adheres to the surface and begins to slide. From the equilibrium of the force along the plane and the coefficient of static friction

$$
F_{1}=\mu \cdot F_{2} \text { we can derive } \mu=\tan \alpha
$$

Calculating the coefficient of static friction (P1.2.5.2)

FRICTION

P1.2.6. 1

Static friction, sliding friction and rolling friction

Static friction, sliding friction and rolling friction (P1.2.6.1)

Cat. No.	Description	$\overline{6}$ ¢̇ ¢̇
31536	Set of weights, 0.1 kg to 2 kg	1
30040	Stand rod, $10 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	6
31447	Spring balance, 10 N	1
34210	Wooden blocks for friction experiments, pair	1

In discussing friction between solid bodies, we distinguish between static friction, sliding friction and rolling friction. Static friction force is the minimum force required to set a body at rest on a solid base in motion. Analogously, sliding friction force is the force required to maintain a uniform motion of the body. Rolling friction force is the force which maintains the uniform motion of a body which rolls on another body.
To begin, the experiment P1.2.6.1 verifies that the static friction force F_{H} and the sliding friction force F_{G} are independent of the size of the contact surface and proportional to the resting force G on the base surface of the friction block. Thus, the following applies:

$$
F_{\mathrm{H}}=\mu_{\mathrm{H}} \cdot G \text { and } F_{\mathrm{G}}=\mu_{\mathrm{G}} \cdot G
$$

The coefficients μ_{H} and μ_{G} depend on the material of the friction surfaces. The following relationship always applies:

$$
\mu_{\mathrm{H}}>\mu_{\mathrm{G}}
$$

To distinguish between sliding and rolling friction, the friction block is placed on top of multiple stand rods laid parallel to each other. The rolling friction force F_{R} is measured as the force which maintains the friction block in a uniform motion on the rolling rods. The sliding friction force F_{G} is measured once more for comparison, whereby this time the friction block is pulled over the stand rods as a fixed base (direction of pull = direction of rod axes). This experiment confirms the relationship:

$$
F_{\mathrm{G}}>F_{\mathrm{R}}
$$

ONE-DIMENSIONAL MOTIONS ON FLETCHER'S TROLLEY

P1.3.2.1

Path-time diagram of straight motion - Recording the time with a counter

P1.3.2.2
Path-time diagram of straight motion

- Recording and evaluating with CASSY

Path-time diagram of straight motion - Recording the time with a counter (P1.3.2.1)

Cat. No.	Description		N N m ■
337130	Track, 1.5 m	1	1
337110	Trolley	1	1
337114	Additional weights, pair	1^{*}	1^{*}
315411	Slotted mass hanger 10 g	1	1
315417	Slotted weight 10 g	4	4
30948	Fishing line	1	1
337462	Combination light barrier	1	1
337463	Holder for combination spoked wheel	1	
337464	Combination spoked wheel	1	1
68341	Holding magnet for track	1	1
33625	Holding magnet adapter with a release mechanism	1	
575471	Counter S	1	
50116	Multi-core cable, 6-pole, 1.5 m	1	1
524013	Sensor-CASSY 2		1
524220	CASSY Lab 2		1
524074	Timer S		1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)		1

*additionally recommended

Fletcher's trolley is the classical experiment apparatus for investigating linear translational motions. The trolley has a ball bearing, his axles are spring-mounted and completely immerged in order to prevent being overloaded. The wheels are designed in such a way that the trolley centers itself on the track and friction at the wheel flanks is avoided.
Using extremely simple means, the experiment P1.3.2.1 makes the definition of the velocity v as the ratio of the path difference Δs and the corresponding time difference Δt directly accessible to the students. The path difference Δs is read off directly from a scale on the track. The electronic measurement of the time difference is started and stopped using a key and a light barrier. To enable investigation of uniformly accelerated motions, the trolley is connected to a thread which is laid over a pulley, allowing various weights to be suspended.
The experiment P1.3.2.2 looks at motion events which can be transmitted to the combination spoked wheel by means of a thin thread on Fletcher's trolley. The combination spoked wheel serves as an easy-running deflection pulley. The signals of the combination light barrier are recorded by the computer-assisted measuring system CASSY and converted to a path-time diagram. As this diagram is generated in real time while the experiment is running, the relationship between the motion and the diagram is extremely clear.

Accelerated motions with an acceleration sensor (P1.3.2.5)

Cat. No.	Description	$\xrightarrow[\sim]{\sim}$
337130	Track, 1.5 m	1
337110	Trolley	1
337114	Additional weights, pair	1
524018	Pocket-CASSY 2 Bluetooth	1
524019	Rechargeable battery for Pocket-CASSY 2 Bluetooth	1
5240031	Bluetooth dongle	1
524220	CASSY Lab 2	1
5240424	3D acceleration sensor S	1
300761	Support blocks, set of 6	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1

In the experiment P1.3.2.5 the acceleration of a cart is recorded from within the system using a wireless, bluetooth connected and battery powered PocketCASSY equipped with a 3D acceleration sensor. The gravitational forces and accelerations are measured in different situations.

Acceleration, velocity and path of the trolley (P1.3.2.5)

ONE-DIMENSIONAL MOTIONS ON THE LINEAR AIR TRACK

P1.3.3.4

Path-time and velocity-time diagrams of straight motion - Recording and evaluating with CASSY

P1.3.3.5

Uniformly accelerated motion with reversal of direction - Recording and evaluating with CASSY

P1.3.3.6

Kinetic energy of a uniformly accelerated mass - Recording and evaluating with CASSY

Path-time and velocity-time diagrams of straight motion - Recording and evaluating with CASSY (P1.3.3.4)

Cat. No.	Description	$\stackrel{\text { ¢ }}{\substack{\text { m} \\ \text { ¢ }}}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{0}{\text { ¢ }}$
337501	Air track	1	1	1
33753	Air supply	1	1	1
6678231	Power controller	1	1	1
33742	Combination light barrier	1	1	1
524013	Sensor-CASSY 2	1	1	1
524220	CASSY Lab 2	1	1	1
524074	Timer S	1	1	1
50116	Multi-core cable, 6 -pole, 1.5 m	1	1	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1	1	1

The advantage of studying linear translational motions on the linear air track is that interference factors such as frictional forces and moments of inertia of wheels do not occur.
The computer-assisted measurement system CASSY is particularly suitable for simultaneously measuring transit time t, path s, velocity v and acceleration a of a slider on the linear air track. The linear motion of the slider is transmitted to the motion sensing element by means of a lightly tensioned thread; the signals of the motion sensing element are matched to the CASSY measuring inputs by the Timer S. The PC supports significantly the evaluation of the measured data. Alternatively the measured data can be exported in table format to external data evaluation.
The object of the experiment P1.3.3.4 is to study uniform and uniformly accelerated motions on the horizontally aligned linear air track.
In the experiment P1.3.3.5 the patch, velocity and acceleration of a slider is record, which moves uphill on an inclined plane, then stops, moves downhill, reflected elastically at the lower end and oscillated several times back and forth. The experiment P1.3.3.6 records the kinetic energy

$$
E=\frac{m}{2} \cdot v^{2}
$$

of a uniformly accelerated slider of the mass m as a function of the time and compares it with the work

$$
W=F \cdot s
$$

which the accelerating force F has performed. This verifies the relationship

$$
E(t)=W(t)
$$

Path-time, velocity-time and acceleration-time diagram (P1.3.3.4)

CONSERVATION OF LINEAR MOMENTUM

P1.3.4.1

Energy and linear momentum in elastic and inelastic collision with Fletcher's trolleys - Measuring with two forked light barriers and CASSY

P1.3.4.6

Energy and linear momentum in elastic and inelastic collision with Fletcher's trolleys - Measuring with two forked light barriers and counter

Energy and linear momentum in elastic and inelastic collision with Fletcher's trolleys - Measuring with two forked light barriers and CASSY (P1.3.4.1)

Cat. No.	Description	$\bar{子}$ ¢ ¢ -	\bullet + $\dot{+}$ $\stackrel{\square}{\square}$
337130	Track, 1.5 m	1	1
337110	Trolley	2	2
337114	Additional weights, pair	1	1
337112	Impact spring for track	1	1
337462	Combination light barrier	2	2
524013	Sensor-CASSY 2	1	
524220	CASSY Lab 2	1	
524074	Timer S	1	
50116	Multi-core cable, 6-pole, 1.5 m	2	2
575451	Counter P		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)		

The use of a track makes superior quantitative results possible when verifying the conservation of linear momentum in an experiment.
In the experiment P1.3.4.1, the obscuration times Δt_{i} of two light barriers are measured, e.g. for two bodies on a linear track before and after elastic and inelastic collision. These experiments investigate collisions between a moving body and a body at rest, as well as collisions between two bodies in motion. The velocities

$$
\begin{aligned}
& v_{\mathrm{i}}=\frac{d}{\Delta t_{\mathrm{i}}} \\
& d: \text { width of interrupter flags }
\end{aligned}
$$

the momentum values

$$
\begin{aligned}
& p_{\mathrm{i}}=m_{\mathrm{i}} \cdot v_{\mathrm{i}} \\
& m_{\mathrm{i}}: \text { masses of bodies }
\end{aligned}
$$

and the energies

$$
E_{\mathrm{i}}=\frac{1}{2} \cdot m_{\mathrm{i}} \cdot v_{\mathrm{i}}^{2}
$$

of the bodies before and after collision can be calculated and compared.
In the experiment P1.3.4.6, the obscuration times Δt_{i} of two light barriers are measured for two bodies on a track before and after elastic and inelastic collision. These experiments investigate collisions between a moving body and a body at rest, as well as collisions between two bodies in motion. The velocities

$$
\begin{aligned}
& v_{\mathrm{i}}=\frac{d}{\Delta t_{\mathrm{i}}} \\
& d: \text { width of interrupter flags }
\end{aligned}
$$

the momentum values

$$
\begin{aligned}
& p_{\mathrm{i}}=m_{\mathrm{i}} \cdot v_{\mathrm{i}} \\
& m_{\mathrm{i}}: \text { masses of bodies }
\end{aligned}
$$

and the energies

$$
E_{\mathrm{i}}=\frac{1}{2} \cdot m_{\mathrm{i}} \cdot v_{\mathrm{i}}^{2}
$$

of the bodies before and after collision can be calculated and compared.

MECHANICS
TRANSLATIONAL MOTIONS OF A MASS POINT

CONSERVATION OF LINEAR MOMENTUM

P1.3.4.5
Newton's third law and laws of collision - Recording and evaluating with two ultrasonic motion sensors and CASSY

Newton's third law and laws of collision - Recording and evaluating with two ultrasonic motion sensors and CASSY (P1.3.4.5)

Cat. No.	Description	
337130	Track, 1.5 m	1
337110	Trolley	2
337114	Additional weights, pair	1
337473	Impact spring, soft	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
5240701	Ultrasonic motion sensor S	2
50111	Extension cable, 15 pin	2
30125	Support block	2
34089	Coupling plug 4 mm	4
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

The use of a track makes superior quantitative results possible when verifying the conservation of linear momentum in an experiment.
In the experiment P1.3.4.5 the way of the two trolleys are measured during an elastic or inelastic collision. This is done with two ultrasonic sensors. $v(t)$ and $\mathrm{a}(t)$-diagrams are determined by the Sensor-CASSY. The forces $F_{1}(t)$ and $F_{2}(t)$ can be calculated from the accelerations $a_{1}(t)$ and $a_{2}(t)$ and the masses m_{1} and m_{2} of the trolleys. It is confirmed that $F_{1}(t)=-F_{2}(t)$ applies during the collision. It follows the conservation of momentum during the whole collision process:

$$
\Delta p_{1}+\Delta p_{2}=\int F_{1}(t) d t+\int F_{2}(t) d t=\int\left(F_{1}(t)+F_{2}(t)\right) d t=0
$$

In addition, the center of mass motion $s_{3}(t)$ is observed and it can be showed that the speed $v_{3}(t)$ of the center of gravity during the whole collision process is constant. This shows alternative the conservation of momentum during the whole collision process:

$$
v_{3}=\frac{m_{1} \cdot v_{1}+m_{2} \cdot v_{2}}{m_{1}+m_{2}}=\frac{p}{m_{1}+m_{2}}=\text { const. }
$$

CONSERVATION OF LINEAR MOMENTUM

P1.3.4.8
Energy and linear momentum in elastic and inelastic collision on the linear air track - Measuring with two forked light barriers and CASSY

P1.3.4.10
Rocket principle: conservation of momentum and reaction

Energy and linear momentum in elastic and inelastic collision on the linear air track - Measuring with two forked light barriers and CASSY (P1.3.4.8)

Cat. No.	Description	$\stackrel{\infty}{\dot{+}}$	
337501	Air track	1	1
33753	Air supply	1	1
6678231	Power controller	1	1
33746	Fork-type light barrier	2	
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$		1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$		1
30101	Leybold multiclamp		2
524013	Sensor-CASSY 2	1	
524005 W	Mobile-CASSY 2 WiFi		1
524220	CASSY Lab 2	1	
524060	Force sensor $\mathrm{S}_{1} \pm 1 \mathrm{~N}$		1
524074	Timer S	1	
50116	Multi-core cable, 6-pole, 1.5 m	1	
30948	Fishing line		1
33756	Jet slider		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1	

In the experiment P1.3.4.8, the obscuration times Δt_{i} of two light barriers are measured for two bodies on a linear track before and after elastic and inelastic collision. These experiments investigate collisions between a moving body and a body at rest, as well as collisions between two bodies in motion. The velocities

$$
\begin{aligned}
& v_{\mathrm{i}}=\frac{d}{\Delta t_{\mathrm{i}}} \\
& d: \text { width of interrupter flags }
\end{aligned}
$$

the momentum values

$$
\begin{aligned}
& p_{\mathrm{i}}=m_{\mathrm{i}} \cdot v_{\mathrm{i}} \\
& m_{\mathrm{i}}: \text { masses of bodies }
\end{aligned}
$$

and the energies

$$
E_{\mathrm{i}}=\frac{1}{2} \cdot m_{\mathrm{i}} \cdot v_{\mathrm{i}}^{2}
$$

of the bodies before and after collision can be calculated and compared.
In the experiment P1.3.4.10, the recoil force on a jet slider is measured for different nozzle cross-sections using a force sensor in order to investigate the relationship between repulsion and conservation of linear momentum.

MECHANICS

TRANSLATIONAL MOTIONS OF A MASS POINT

FREE FALL

P1.3.5. 1
Free fall: time measurement with the contact plate and the counter S

Free fall: time measurement with the contact plate and the counter S (P1.3.5.1)

Cat. No.	Description	E-
33623	Contact plate, large	1
33621	Holding magnet	1
33625	Holding magnet adapter with a release mechanism	1
575471	Counter S	1
30121	Stand base MF	2
30126	Stand rod $25 \mathrm{~cm}, 10 \mathrm{~mm} \emptyset$	3
30046	Stand rod, $150 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30101	Leybold multiclamp	2
31123	Scale with pointers	1
50125	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, red	1
50126	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, blue	1
50135	Connecting lead, $32 \mathrm{~A}, 200 \mathrm{~cm}$, red	1
50136	Connecting lead, $32 \mathrm{~A}, 200 \mathrm{~cm}$, blue	1

To investigate free fall, a steel ball is suspended from an electromagnet. It falls downward with a uniform acceleration due to the force of gravity

$$
\begin{aligned}
& F=m \cdot g \\
& m: \text { mass of ball, } g: \text { gravitational acceleration }
\end{aligned}
$$

as soon as the electromagnet is switched off. The friction of air can be regarded as negligible as long as the falling distance, and thus the terminal velocity, are not too great; in other words, the ball falls freely.

In the experiment P1.3.5.1, electronic time measurement is started as soon as the ball is released through interruption of the magnet current. After traveling a falling distance h, the ball falls on a contact plate, stopping the measurement of time t. The measurements for various falling heights are plotted as value pairs in a path-time diagram. As the ball is at rest at the beginning of timing, g can be determined using the relationship

$$
h=\frac{1}{2} g \cdot t^{2}
$$

Path-time diagram of the free fall of the ball (P1.3.5.1)

FREE FALL

P1.3.5.3
Free fall: multiple measurements with the g ladder

Free fall: multiple measurements with the g ladder (P1.3.5.3)

Cat. No.	Description	べ
529034	g ladder	1
33746	Fork-type light barrier	1
50116	Multi-core cable, 6-pole, 1.5 m	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
524074	Timer S	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

Path-time and acceleration-time diagrams of the falling body (P1.3.5.3)

The disadvantage of preparing a path-time diagram by recording the measured values point by point is that it takes a long time before the dependency of the result on experiment parameters such as the initial velocity or the falling height becomes apparent. Such investigations become much simpler when the entire measurement series of a path-time diagram is recorded in one measuring run using the computer.
In the experiment P1.3.5.3, a ladder with several rungs falls through a forked light barrier, which is connected to the CASSY computer interface device to measure the obscuration times. This measurement is equivalent to a measurement in which a body falls through multiple equidistant light barriers. The height of the falling body corresponds to the rung width. The measurement data are recorded and evaluated using CASSY Lab. The instantaneous velocities are calculated from the obscuration times and the rung width and displayed in a velocity-time diagram $v(t)$. The measurement points can be described by a straight line

$$
\begin{aligned}
& v(t)=v_{0}+g \cdot t \\
& g: \text { gravitational acceleration }
\end{aligned}
$$

whereby v_{0} is the initial velocity of the ladder when the first rung passes the light barrier.

ANGLED PROJECTION

P1.3.6. 1
Point-by-point recording of the projection parabola as a function of the speed and angle of projection

P1.3.6.2
Principle of superposing: comparison of inclined projection and free fall

Principle of superposing: comparison of inclined projection and free fall (P1.3.6.2)

Cat. No.	Description	$\overline{0}$ $\dot{\square}$ $\dot{\square}$	N 0 m \vdots \vdots
33656	Projection apparatus, large	1	1
30106	Bench clamp	2	2
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	
30076	Laboratory stand II	1	
31122	Vertical rule	1	
30011	Saddle base	1	
64942	Tray, $552 \mathrm{~mm} \times 197 \mathrm{~mm} \times 48 \mathrm{~mm}$	1	1
688108	Quartz sand, 1 kg	1	1
33621	Holding magnet		1
521231	Low-voltage power supply 3/6/9/12 V		1
31102	Metal rule, 1 m		1
30044	Stand rod, $100 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		1
30107	Simple bench clamp		1
50126	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, blue		1
50135	Connecting lead, $32 \mathrm{~A}, 200 \mathrm{~cm}$, red		1
50136	Connecting lead, $32 \mathrm{~A}, 200 \mathrm{~cm}$, blue		1

Schematic diagram comparing angled projection and free fall (P1.3.6.2)

The trajectory of a ball launched at a projection angle α with a projection velocity v_{0} can be reconstructed on the basis of the principle of superposing. The overall motion is composed of a motion with constant velocity in the direction of projection and a vertical falling motion. The superposition of these motions results in a parabola, whose height and width depend on the angle and velocity of projection.
The experiment P1.3.6.1 measures the trajectory of the steel ball point by point using a vertical scale. Starting from the point of projection, the vertical scale is moved at predefined intervals; the two pointers of the scale are set so that the projected steel ball passes between them. The trajectory is a close approximation of a parabola. The observed deviations from the parabolic form may be explained through friction with the air.
In the experiment P1.3.6.2, a second ball is suspended from a holding magnet in such a way that the first ball would strike it if propelled in the direction of projection with a constant velocity. Then, the second ball is released at the same time as the first ball is projected. We can observe that, regardless of the launch velocity v_{0} of the first ball, the two balls collide; this provides experimental confirmation of the principle of superposing.

ROTATIONAL MOTIONS

P1.4.1.1

Path-time diagrams of rotational motions - Time measurement with the counter

P1.4.1.2
Path-time diagrams of rotational motions - Recording and evaluating with CASSY

Path-time diagrams of rotational motions - Time measurement with the counter (P1.4.1.1)

Cat. No.	Description	「	¢ $\stackrel{+}{+}$ $\stackrel{\square}{\square}$
34723	Rotation model	1	1
33746	Fork-type light barrier	1	
575471	Counter S	1	
50116	Multi-core cable, 6-pole, 1.5 m	1	1
30076	Laboratory stand II	1	1
30107	Simple bench clamp	1	1
337462	Combination light barrier		1
524013	Sensor-CASSY 2		1
524220	CASSY Lab 2		1
524074	Timer S		1
33621	Holding magnet		1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm}$ Ø		1
30011	Saddle base		1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)		1

The low-friction Plexiglas disk of the rotation model is set in uniform or uniformly accelerated motion for quantitative investigations of rotational motions. Forked light barriers are used to determine the angular velocity; their light beams are interrupted by a 10° flag mounted on the rotating disk. When two forked light barriers are used, measurement of time t can be started and stopped for any angle φ (optional possible). This experiment determines the mean velocity

$$
\omega=\frac{\varphi}{t}
$$

If only one forked light barrier is available, the obscuration time Δt is measured, which enables calculation of the instantaneous angular velocity

$$
\omega=\frac{10^{\circ}}{\Delta t}
$$

In the experiment P1.4.1.1, the angular velocity ω and the angular acceleration α are recorded analogously to acceleration in translational motions. Both uniform and uniformly accelerated rotational motions are investigated. The results are graphed in a velocity-time diagram $\omega(t)$. In the case of a uniformly accelerated motion of a rotating disk initially at rest, the angular acceleration can be determined from the linear function

$$
\omega=\alpha \cdot t
$$

The topic of the experiment P1.4.1.2 are homogeneous and constantly accellerated rotational motions, which are studied on the analogy of homogeneous and constantly accellerated translational motions.
The use of the computer-assisted measured-value recording system CASSY facilitates the study of uniform and uniformly accellerated rotational motions. A thread stretched over the surface of the rotation model transmits the rotational motion to the motion sensing element whose signals are adapted to the measuring inputs of CASSY by a box.

MECHANICS
ROTATIONAL MOTIONS OF A RIGID BODY

CONSERVATION OF ANGULAR MOMENTUM

P1.4.2. 1
Conservation of angular momentum in elastic and inelastic rotational collision

Conservation of angular momentum in elastic and inelastic rotational collision (P1.4.2.1)

Cat. No.	Description	-
34723	Rotation model	1
524431	Light barrier M	2
524005 W	Mobile-CASSY 2 Wifi	1

Torsion impacts between rotating bodies can be described analogously to onedimensional translational collisions when the axes of rotation of the bodies are parallel to each other and remain unchanged during the collision. This condition is reliably met when carrying out measurements using the rotation model. The angular momentum is specified in the form

$$
\begin{aligned}
& L=I \cdot \omega \\
& I: \text { moment of inertia, } \omega \text { : angular velocity }
\end{aligned}
$$

The principle of conservation of angular momentum states that for any torsion impact of two rotating bodies, the quantity

$$
L=I_{1} \cdot \omega_{1}+I_{2} \cdot \omega_{2}
$$

before and after impact remains the same.
The experiment P1.4.2.1 investigate the nature of elastic and inelastic torsion impact. Using two light barriers and the measuring system CASSY, the obscuration times of two interrupter flags are registered as a measure of the angular velocities before and after torsion impact.

CENTRIFUGAL FORCE

P1.4.3.3
Centrifugal force of an orbiting body - Measuring with the central force apparatus and CASSY

Centrifugal force of an orbiting body - Measuring with the central force apparatus and CASSY (P1.4.3.3)

Cat. No.	Description	m m $\dot{\sim}$ \vdots
524068	Centrifugal force apparatus S	1
521491	AC/DC power supply $0 . . .12 \mathrm{~V} / 3 \mathrm{~A}$	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
524074	Timer S	1
33746	Fork-type light barrier	1
50116	Multi-core cable, 6-pole, 1.5 m	1
30106	Bench clamp	1
30002	Stand base, V-shaped, small	1
30040	Stand rod, $10 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1
	additionally required: PC with Windows XP/Vista/7/8/10 ($\times 86$ or $\times 64$)	1

Centrifugal force of an orbiting body - Measuring with the central force apparatus and CASSY (P1.4.3.3)

The centrifugal force apparatus S enables experimental investigation of the centrifugal force F as a function of the rotating mass m, the distance r of the mass from the centre of rotation and the angular velocity ω, thus making it possible to confirm the relation

$$
\begin{aligned}
& F=m \cdot \omega^{2} \cdot r \\
& r: \text { radius of orbit, } \omega: \text { angular velocity }
\end{aligned}
$$

for the centrifugal force.
In the centrifugal force apparatus S, the centrifugal force Facting on a rotating mass m is transmitted via a lever with ball-and-socket joint and a push pin in the axis of rotation to a leaf spring, whose deflection is measured electrically by means of a bridge-connected strain gauge. In the measuring range relevant for the experiment, the deformation of the leaf spring is elastic and thus proportional to the force F.

In the experiment P1.4.3.3, the relationship

$$
F \propto \omega^{2}
$$

is derived directly from the parabolic shape of the recorded curve $F(\omega)$. To verify the proportionalities

$$
F \propto r, \quad F \propto m
$$

curves are recorded and evaluated for different orbit radii r and various masses m.

MECHANICS
ROTATIONAL MOTIONS OF A RIGID BODY

MOTIONS OF A GYROSCOPE

P1.4.4.3
Precession and nutation of a gyroscope

Precession and nutation of a gyroscope (P1.4.4.3)

Cat. No.	Description	$\stackrel{\text { m }}{\substack{\text { + } \\ \text { íd }}}$
34820	Gyroscope	1
34263	Weight 50 g	2
524082	Rotary motion sensor S	1
337468	Reflection light barrier	1
590021	Double spring clip	1
524074	Timer S	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

Precession of the gyroscope (P1.4.4.3)

Gyroscopes generally execute extremely complex motions, as the axis of rotation is supported at only one point and changes directions constantly. We distinguish between the precession and the nutation of a gyroscope.
The aim of the experiment P1.4.4.3 is to investigate the precession of a gyroscope. The precession frequency f_{p} is measured by means of the rotary motion sensor S, the rotary frequency f of the gyroscope disk by means of the reflextion light barrier, each in combination with CASSY. The dependance of the precession frequency f_{p} on the applied force, i.e. the torque M and the rotary frequency f is determined quantitatively. The relationship

$$
\omega_{P}=\frac{M}{l} \cdot \frac{1}{\omega}
$$

applies for the corresponding angular frequencies ω_{P} and ω and for a known moment of inertia / of the gyroscope around its axis of symmetry.
The nutation of a force-free gyroscope is investigated, too. The nutation frequency f_{N} is measured by means of the rotary motion sensor S, the rotary frequency f of the gyroscope disk by means of the reflextion light barrier, each in combination with CASSY. The dependance of the nutation frequency f_{N} on the rotary frequency f is determined quantitatively. The relationship

$$
\omega_{N}=\frac{l \cdot \omega}{I_{\perp}}
$$

applies for the corresponding angular frequencies ω_{N} and ω and for known moments of inertia I of the gyroscope around its axis of symmetry (rotational axis of the gyroscope disk) and I around the pivotal point (point of support) of the axis.

MOMENT OF INERTIA

P1.4.5.1

Definition of moment of inertia
P1.4.5.2
Moment of inertia and body shape
P1.4.5.3
Confirming Steiner's theorem

Definition of moment of inertia (P1.4.5.1)

Cat. No.	Description	-	N	
347801	Torsion axle	1	1	1
30002	Stand base, V-shaped, small	1	1	1
31327	Hand-held stop-watch, 60s/0.2s	1	1	1
34781	Cylinders for torsion axle, set		1	
34782	Sphere for the torsion axle		1	
34783	Circular disc for the torsion axle			1

Confirming Steiner's theorem (P1.4.5.3)

For any rigid body whose mass elements m_{i} are at a distance of r_{i} from the axis of rotation, the moment of inertia is

$$
I=\sum_{i} m_{i} \cdot r_{i}^{2}
$$

For a particle of mass m in an orbit with the radius r, we can say

$$
I=m \cdot r^{2}
$$

The moment of inertia is determined from the oscillation period of the torsion axle on which the test body is mounted and which is elastically joined to the stand via a helical spring. The system is excited to harmonic oscillations. For a known directed angular quantity D, the oscillation period T can be used to calculate the moment of inertia of the test body using the equation

$$
I=D \cdot\left(\frac{T}{2 \pi}\right)^{2}
$$

In the experiment P1.4.5.1, the moment of inertia of a "mass point" is determined as a function of the distance r from the axis of rotation. In this experiment, a rod with two weights of equal mass is mounted transversely on the torsion axle. The centers of gravity of the two weights have the same distance r from the axis of rotation, so that the system oscillates with no unbalanced weight.
The experiment P1.4.5.2 compares the moments of inertia of a hollow cylinder, a solid cylinder and a solid sphere. This measurement uses two solid cylinders with equal mass but different radii. Additionally, this experiment examines a hollow cylinder which is equal to one of the solid cylinders in mass and radius, as well as a solid sphere with the same moment of inertia as one of the solid cylinders.
The experiment P1.4.5.3 verifies Steiner's law using a flat circular disk. Here, the moments of inertia I_{A} of the circular disk are measured for various distances a from the axis of rotation, and compared with the moment of inertia $/ s$ around the axis of the center of gravity. This experiment confirms the relationship

$$
I_{A}-I_{S}=M \cdot a^{2}
$$

CONSERVATION OF ENERGY

P1.4.6.1
Maxwell's wheel
P1.4.6.2
Maxwell's wheel - Recording and evaluating with ultrasonic motion sensor

Maxwell's wheel (P1.4.6.1)

Cat. No.	Description	$\dot{\dot{o}}$ $\dot{+}$ $\dot{\square}$	N $\dot{+}$ $\dot{+}$ \vdots
33122	Maxwell's wheel	1	1
33746	Fork-type light barrier	1	
50116	Multi-core cable, 6-pole, 1.5 m	1	
575471	Counter S	1	
33625	Holding magnet adapter with a release mechanism	1	
31123	Scale with pointers	1	1
30011	Saddle base	1	1
30125	Support block	1	
30121	Stand base MF	2	2
30127	Stand rod $50 \mathrm{~cm}, 10 \mathrm{~mm} \emptyset$	2	3
30044	Stand rod, $100 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	2	2
30101	Leybold multiclamp	4	7
5240701	Ultrasonic motion sensor S		1
50111	Extension cable, 15 pin		1
524005 W	Mobile-CASSY 2 WiFi		1

The law of conversation of energy states that the total amount of energy in an isolated system remains constant over time. Within this system the energy can change form, for instance potential in kinetic energy. In the daily experience (also during experiments) energy apparently is lost. The reason for this is a change to an energy form which is not considered like the friction.
Experiment P1.4.6.1 is used to examine the conservation of energy at the Maxwell's wheel. During the experiment potential energy $E_{\text {pot }}$ is transformed to kinetic energy $E_{\text {kin }}$ due a translational motion $\left(E_{\text {trans }}\right)$ and a rotational motion ($\left.E_{\text {rot }}\right)$. For different heights times and velocities are measured. From the data one can determine the inertia of the Maxwell's wheel. With a known inertia, one can calculate the gravitational acceleration.
In the experiment P1.4.6.2 the conservation of energy at the Maxwell's wheel is studied. The position and velocity, required for calculation of kinetic energy, is measured with an ultrasonic motion sensor.

SIMPLE AND COMPOUND PENDULUM

P1.5.1.1
Determining the gravitational acceleration with a simple pendulum

P1.5.1.7
Determination of gravitational acceleration with a simple pendulum - Measuring with light barrier

Determination of gravitational acceleration with a simple pendulum - Measuring with light barrier (P1.5.1.7)

Cat. No.	Description	둔	N
340851	Weight, 50 g	3	3
68651	Cord	1	1
31404	Support clip, for plugging in	1	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	1
LDS 00001	Stopwatch, digital	1	
30121	Stand base MF	2	2
30126	Stand rod $25 \mathrm{~cm}, 10 \mathrm{~mm} \emptyset$	1	1
30127	Stand rod $50 \mathrm{~cm}, 10 \mathrm{~mm} \emptyset$	1	1
30125	Support block	1	1
524005 W	Mobile-CASSY 2 WiFi		1
524431	Light barrier M		1
688808	Stand rod, $10 \times 223 \mathrm{~mm}$, with thread M6		1
30002	Stand base, V-shaped, small		1

A simple, or "mathematic" pendulum is understood to be a point-shaped mass m suspended on a massless thread with the length s. For small deflections, it oscillates under the influence of gravity with the period

$$
T=2 \pi \cdot \sqrt{\frac{s}{g}}
$$

Thus, a mathematic pendulum could theoretically be used to determine the gravitational acceleration g precisely through measurement of the oscillation period and the pendulum length.
In the experiment P1.5.1.1, a weight on a cord is used to determine the gravitational acceleration. As the mass of the weight is much greater than that of the cord on which it is suspended, this pendulum can be considered to be a close approximation of a mathematic pendulum. Multiple oscillations are recorded to improve measuring accuracy. For gravitational acceleration, the error then depends essentially on the accuracy with which the length of the pendulum is determined.
In the experiment P1.5.1.7, a weight on a cord is used to determine the gravitational acceleration. As the mass of the weight is much greater than that of the cord on which it is suspended, this pendulum can be considered to be a close approximation of a mathematic pendulum. The measurement is done with a light barrier and CASSY. The error of the gravitational acceleration then depends essentially on the accuracy with which the length of the pendulum is determined.

SIMPLE AND COMPOUND PENDULUM

P1.5.1.3

Oscillations of a rod pendulum and determination of the acceleration due to gravity on earth

- Measuring with rotary motion sensor

P1.5.1.6

Pendulum with changeable acceleration due to gravity (variable g-pendulum)

Oscillations of a rod pendulum and determination of the acceleration due to gravity on earth - Measuring with rotary motion sensor (P1.5.1.3)

Cat. No.	Description		¢
34620	Physical pendulum	1	1
524005 W	Mobile-CASSY 2 WiFi	1	
524082	Rotary motion sensor S	1	1
30121	Stand base MF	2	2
30126	Stand rod $25 \mathrm{~cm}, 10 \mathrm{~mm} \emptyset$	1	2
524013	Sensor-CASSY 2		1
524220	CASSY Lab 2		1
30127	Stand $\operatorname{rod} 50 \mathrm{~cm}, 10 \mathrm{~mm} \emptyset$		1
30101	Leybold multiclamp		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)		1

In the case of a physical pendulum, one considers the mass distribution of a rigid body. The calculation of the period of oscillation T is based on the moment of inertia J around the suspension point, the mass m and the distance s of the suspension point from the center of mass.

$$
T=2 \pi \cdot \sqrt{\frac{J}{m g s}}
$$

The reduced pendulum length I_{R} is the length of a mathematical pendulum of the same oscillation period. Often the reduced pendulum length cannot be determined with the desired accuracy because the exact determination of the moment of inertia or the center of gravity is difficult. In the case of the reversion pendulum, the mass distribution is changed so that the oscillation periods for the two axes of rotation are the same. As a result, it is clear that the reduced pendulum length I_{R} corresponds to the distance between the two axes of rotation and is therefore known very accurately.
In the experiment P1.5.1.3, the oscillation of a rod pendulum, i.e. an simple physical pendulum is investigated. Using the rotary motion sensor S the oscillation of the pendulum is recorded as a function of time. Angle $\alpha(t)$, velocity $\omega(t)$ and acceleration $\alpha(t)$ are compared. In addition, the effective length of the pendulum is determined from the measured oscillation period T. The dependance of the period T on the amplitude A of a oscillation is investigated. For small deflections the oscillation of an pendulum is approximately harmonic and the period is independant from the amplitude. For high deflections this approximation is no longer satisfied: the higher the amplitude is the larger the period. The rod pendulum is applied as reversible pendulum. The value of the acceleration due to gravity is determined. The pendulum is set up at two pivot points at opposite sides of the rod. The position of two sliding weights influences the period. When the pendulum is properly adjusted, it oscillates on both edges with the same period T. The effective pendulum length I_{r} corresponds to the distance d between the two pivot points. The acceleration due to gravity is calculated form the effective pendulum length I_{r} and the period T.
In the experiment P1.5.1.6, a pendulum with variable acceleration due to gravity (variable g pendulum) is assembled and investigated. The oscillation plane is tilted. Therefore, the acceleration due to gravity is reduced. This leads to different oscillation periods depending on the tilt. In the experiment the dependance of the period on the tilt angle is determined. Additionally, the acceleration due to gravity on different celestial bodies is simulated.

HARMONIC OSCILLATIONS

P1.5.2.1

Oscillations of a spring pendulum and determination of oscillation period as a function of the oscillating mass - Measuring with CASSY

Oscillations of a spring pendulum and determination of oscillation period as a function of the oscillating mass Measuring with CASSY (P1.5.2.1)

When a system is deflected from a stable equilibrium position, oscillations can occur. An oscillation is considered harmonic when the restoring force F is proportional to the deflection x from the equilibrium position.

$F=D \cdot x$
 D : directional constant

The oscillations of a spring pendulum are often used as a classic example of this. In the experiment P1.5.2.1, the harmonic oscillations of a spring pendulum are recorded as a function of time using the motion transducer and the computerassisted measured value recording system CASSY. In the evaluation, the oscillation quantities path x, velocity v and acceleration a are compared on the screen. These can be displayed either as functions of the time t or as a phase diagram. The experiment records and evaluates the oscillations of a spring pendulum for various suspended masses m. The relationship

$$
T=2 \pi \cdot \sqrt{\frac{D}{m}}
$$

for the oscillation period is verified.

Path, velocity and acceleration on the pendulum (P1.5.2.1)

TORSION PENDULUM

P1.5.3.1
Free rotational oscillations

- Measuring with a hand-held stopclock

P1.5.3.2
Forced rotational oscillations - Measuring with a hand-held stopclock

Free rotational oscillations - Measuring with a hand-held stopclock (P1.5.3.1)

Cat. No.	Description	¢	$\begin{aligned} & \text { N } \\ & \dot{m} \\ & \dot{\Gamma} \end{aligned}$
34600	Torsion pendulum	1	1
521546	DC Power Supply 0...16 V/0... 5 A	1	1
31327	Hand-held stop-watch, 60s/0.2s	1	1
50146	Connecting leads 19 A, 100 cm , red/blue, pair	1	2
562793	Plug-in power supply for torsion pendulum		1
531120	Multimeter LDanalog 20		1

The torsion pendulum according to Pohl can be used to investigate free or forced harmonic rotational oscillations. An electromagnetic eddy current brake damps these oscillations to a greater or lesser extent, depending on the set current. The torsion pendulum is excited to forced oscillations by means of a motordriven eccentric rod.
The aim of the experiment P1.5.3.1 is to investigate free harmonic rotational oscillations of the type

$$
\begin{aligned}
& \varphi(t)=\varphi_{0} \cdot \cos \omega t \cdot e^{-\delta \cdot t} \text { where } \omega=\sqrt{\omega_{0}^{2}-\delta^{2}} \\
& \omega_{0}: \text { characteristic frequency of torsion pendulum }
\end{aligned}
$$

To distinguish between oscillation and creepage, the damping constant Δ is varied to find the current I_{0} which corresponds to the aperiodic limiting case. In the oscillation case, the angular frequency ω is determined for various damping levels from the oscillation period T and the damping constant Δ by means of the ratio

$$
\left|\frac{\varphi_{n+1}}{\varphi_{n}}\right|=e^{-\delta \cdot \frac{T}{2}}
$$

of two sequential oscillation amplitudes. Using the relationship

$$
\omega^{2}=\omega_{0}^{2}-\delta^{2}
$$

we can determine the characteristic frequency ω_{0}.
In the experiment P1.5.3.2, the torsion pendulum is excited to oscillations with the frequency ω by means of a harmonically variable angular momentum. To illustrate the resonance behavior, the oscillation amplitudes determined for various damping levels are plotted as a function of ω^{2} and compared with the theoretical curve

$$
\varphi_{0}=\frac{M_{0}}{l} \cdot \frac{1}{\sqrt{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\delta^{2} \cdot \omega^{2}}}
$$

[^0]

TORSION PENDULUM

P1.5.3.3

Free rotational oscillations

- Recording with CASSY

P1.5.3.4

Forced harmonic and chaotic rotational oscillations

- Recording with CASSY

Free rotational oscillations - Recording with CASSY (P1.5.3.3)

Cat. No.	Description	mo	+
34600	Torsion pendulum	1	1
521546	DC Power Supply 0...16 V/0... 5 A	1	1
524013	Sensor-CASSY 2	1	1
524220	CASSY Lab 2	1	1
524082	Rotary motion sensor S	1	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1	2
562793	Plug-in power supply for torsion pendulum		1
531120	Multimeter LDanalog 20		1
	additionally required: PC with Windows XP/Vista/7/8/10 (×86 or $\times 64$)	1	1

The computer-assisted CASSY measured-value recording system is ideal for recording and evaluating the oscillations of the torsion pendulum. The numerous evaluation options enable a comprehensive comparison between theory and experiment. Thus, for example, the recorded data can be displayed as path-time, velocity-time and acceleration-time diagrams or as a phase diagram (pathvelocity diagram).
The aim of the experiment P1.5.3.3 is to investigate free harmonic rotational oscillations of the general type

$$
\begin{aligned}
& \varphi(t)=(\varphi(0) \cdot \cos \omega t+\varphi(0) \cdot \sin \omega t) \cdot e^{-\delta t} \\
& \text { where } \omega=\sqrt{\omega_{0}^{2}-\delta^{2}} \\
& \text { where } \omega_{0}: \text { characteristic frequency of torsion pendulum }
\end{aligned}
$$

This experiment investigates the relationship between the initial deflection $\vartheta(0)$ and the initial velocity $\omega(0)$. In addition, the damping constant Δ is varied in order to find the current I_{0} which corresponds to the aperiodic limiting case.
To investigate the transition between forced harmonic and chaotic oscillations, the linear restoring moment acting on the torsion pendulum is deliberately altered in the experiment P1.5.3.4 by attaching an additional weight to the pendulum. The restoring moment now corresponds to a potential with two minima, i.e. two equilibrium positions. When the pendulum is excited at a constant frequency, it can oscillate around the left minimum, the right minimum or back and forth between the two minima. At certain frequencies, it is not possible to predict when the pendulum will change from one minimum to another. The torsion pendulum is then oscillating in a chaotic manner.

MECHANICS OSCILLATIONS

COUPLING OF OSCILLATIONS

P1.5.4. 1

Coupled pendulum - Measuring with
a hand-held stopclock

Coupled pendulum - Measuring with a hand-held stopclock (P1.5.4.1)

Cat. No.	Description	¢
34645	Double pendulum	1
30002	Stand base, V-shaped, small	2
30044	Stand rod, $100 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	2
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30101	Leybold multiclamp	4
46097	Metal rule, 0.5 m	1
31327	Hand-held stop-watch, 60s/0.2s	1

Two coupled pendulums oscillate in phase with the angular frequency ω_{+}when they are deflected from the equilibrium position by the same amount. When the second pendulum is deflected in the opposite direction, the two pendulums oscillate in phase opposition with the angular frequency $\omega_{\text {_ }}$. Deflecting only one pendulum generates a coupled oscillation with the angular frequency

$$
\omega=\frac{\omega_{+}+\omega_{-}}{2}
$$

in which the oscillation energy is transferred back and forth between the two pendulums. The first pendulum comes to rest after a certain time, while the second pendulum simultaneously reaches its greatest amplitude. Then the same process runs in reverse. The time from one pendulum stand still to the next is called the beat period T_{s}. For the corresponding beat frequency, we can say

$$
\omega_{s}=\omega_{+}-\omega_{-}
$$

The aim of the experiment P1.5.4.1 is to observe in-phase, phase-opposed and coupled oscillations. The angular frequencies $\omega_{+1} \omega_{-}, \omega_{s}$ and ω are calculated from the oscillation periods T_{+1}, T_{-}, T_{S} and T measured using a stopclock and compared with each other.

COUPLING OF OSCILLATIONS

P1.5.4.4
Coupled pendulum - Recording and evaluating with CASSY

Coupled pendulum - Recording and evaluating with CASSY (P1.5.4.4)

Cat. No.	Description	
34603	Pendulums with axle, pair	1
34085	Weights, each 50 g , set of 6	1
31404	Support clip, for plugging in	2
35210	Helical spring, $3 \mathrm{~N} / \mathrm{m}$	1
57943	Motor and tachogenerator, STE 4/19/50	2
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
30125	Support block	2
30126	Stand rod $25 \mathrm{~cm}, 10 \mathrm{~mm}$ ø	1
30127	Stand rod $50 \mathrm{~cm}, 10 \mathrm{~mm}$ ø	2
30121	Stand base MF	2
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	2
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1

Two coupled pendulums swing in experiment P1.5.4.4 in phase with a frequency f_{1} when they are deflected from the rest position by the same distance. When the second pendulum is deflected in the opposite direction, the two pendulums oscillate in opposing phase with the frequency f_{2}. Deflecting only one pendulum generates a coupled oscillation with the frequency

$$
f_{n}=\frac{f_{1}+f_{2}}{2}
$$

in which oscillation energy is transferred back and forth between the two pendulums. The first pendulum comes to rest after a certain time, while the second pendulum simultaneously reaches its greatest amplitude. The time from one standstill of a pendulum to the next is called T_{s}. For the corresponding beat frequency, we can say

$$
f_{s}=\left|f_{1}-f_{2}\right|
$$

TRANSVERSAL AND LONGITUDINAL WAVES

P1.6.1.3

Investigation of resonance vibrations of the leaf spring model and determination of the wavelength

P1.6.1.4
Production of standing waves on a string and determination of the wavelength

P1.6.1.5

Production of standing waves on a helical spring and determination of the wavelength

Production of standing waves on a helical spring and determination the wavelength (P1.6.1.5)

Cat. No.	Description	? \vdots $\dot{\square}$ $\bar{\square}$	\ddagger \vdots \vdots $\dot{\square}$? \square \vdots \vdots
34654	Leaf spring resonance model	1		
58709	Vibration generator	1	1	1
522561	Function generator P	1	1	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	1	
50133	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, black	2	2	2
30950	Demonstration cord		1	
340921	Pulley $\emptyset 100 \mathrm{~mm}$, plug-in		1	
68310	Weight, 0.1 kg		1	
68311	Weight, 0.2 kg		1	
30001	Stand base, V-shaped, large		2	1
30044	Stand rod, $100 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		2	1
30101	Leybold multiclamp		2	3
30125	Support block		1	
35211	Helical spring, 2.7 N/m			1
31122	Vertical rule			1
30011	Saddle base			1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm}$ Ø			1

A wave is formed when two coupled, oscillating systems sequentially execute oscillations of the same type. The wave can be excited e.g. as a transversal wave on an elastic string or as a longitudinal wave along a helical spring. The propagation velocity of an oscillation state - the phase velocity v - is related to the oscillation frequency f and the wavelength λ through the formula

$$
v=\lambda \cdot f
$$

When the string or the helical spring is fixed at both ends, reflections occur at the ends. This causes superposing of the "outgoing" and reflected waves. Depending on the string length s, there are certain frequencies at which this superposing of the waves forms stationary oscillation patterns - standing waves. The distance between two oscillation nodes or two antinodes of a standing wave corresponds to one half the wavelength. The fixed ends correspond to oscillation nodes. For a standing wave with n oscillation antinodes, we can say

$$
s=n \cdot \frac{\lambda_{n}}{2}
$$

This standing wave is excited with the frequency

$$
f_{n}=n \cdot \frac{v}{2 s}
$$

In the experiment P1.6.1.3 the leaf spring model is stimulated with different frequencies f and thus examined for resonances. Hence the wavelength λ of the vibrations can be identified.

$$
\lambda=\frac{c}{f}
$$

c: propagation speed
In the experiment P1.6.1.4 a transversal wave is generated. By moving one end of a string up and down and keeping the other end fixed, a wave is created. The wave will be reflected at the fixed end and runs back on the string. For defined frequencies, certain points will being fixed (nodal) while others (antinodes) oscillate with high amplitude.
In the experiment P1.6.1.5, a longitudinal wave at a helical spring is observed. By moving one end up and down and the other end is fixed, reflects the wave there and runs back. Again for defined frequencies, certain points of the spring remain at rest while others oscillate.

MECHANICS WAVE MECHANICS

WAVE MACHINE

P1.6.2.1

Wavelength, frequency and phase velocity of travelling waves

P1.6.2.2
Wavelength and frequency of standing waves

Wavelength, frequency and phase velocity of travelling waves (P1.6.2.1)

Cat. No.	Description	\square $\dot{\sim}$ 0 \vdots \vdots	\sim \sim \vdots \vdots \vdots
40120	Wave machine, basic module 1	2	2
40122	Drive module for wave machine	1	1
40123	Damping module for wave machine	1	
40124	Brake unit for wave machine	2	2
521231	Low-voltage power supply 3/6/9/12 V	1	1
726890	DC-High Current Power Supply 1... $32 \mathrm{~V} / 0 . . .20 \mathrm{~A}$	1	1
31327	Hand-held stop-watch, 60s/0.2s	1	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	1
501451	Connecting leads, $19 \mathrm{~A}, 50 \mathrm{~cm}$, black, pair	1	1
501461	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, black, pair	1	1
50146	Connecting leads 19 A, 100 cm , red/blue, pair	1	1

Relationship between the frequency and the wavelength of a propagating wave (P1.6.2.1)

MECHANICS

WAVE MECHANICS

CIRCULARLY POLARIZED WAVES

P1.6.3.1

Investigating circularly polarized string waves in the experiment setup according to Melde

P1.6.3.2

Determining the phase velocity of circularly polarized string waves in the experiment setup according to Melde

Investigating circularly polarized string waves in the experiment setup according to Melde (P1.6.3.1)

Cat. No.	Description	¢	N ¢ \vdots
40103	Vibrating string apparatus	1	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	1
451281	Stroboscope		1
31505	Single-pan suspension balance 311		1

The experiment setup according to Melde generates circularly polarized string waves on a string with a known length s using a motordriven eccentric. The tensioning force F of the string is varied until standing waves with the wavelength

$$
\begin{aligned}
& \lambda_{n}=\frac{2 s}{n} \\
& n: \text { number of oscillation nodes }
\end{aligned}
$$

appear.
In the experiment P1.6.3.1, the wavelengths λ_{n} of the standing string waves are determined for different string lengths s and string masses m at a fixed excitation frequency and plotted as a function of the respective tensioning force F_{m}. The evaluation confirms the relationship

$$
\lambda \propto \sqrt{\frac{F}{m^{*}}}
$$

with the mass assignment

$$
\begin{aligned}
& m^{*}=\frac{m}{s} \\
& m: \text { string mass, } s: \text { string length }
\end{aligned}
$$

In the experiment P1.6.3.2, the same measuring procedure is carried out, but with the addition of a stroboscope. This is used to determine the excitation frequency f of the motor. It also makes the circular polarization of the waves visible in an impressive manner when the standing string wave is illuminated with light flashes which have a frequency approximating that of the standard wave. The additional determination of the frequency f enables calculation of the phase velocity c of the string waves using the formula

$$
c=\lambda \cdot f
$$

as well as quantitative verification of the relationship

$$
c=\sqrt{\frac{F}{m^{*}}}
$$

Wavelength λ of string waves as a function of the tension force F, the string length s and string density $m^{*}(P 1.6 .3 .1)$

PROPAGATION OF WATER WAVES

P1.6.4. 1
Exciting circular and straight water waves

P1.6.4.2
Huygens' principle in water waves
P1.6.4.3
Propagation of water waves in two different depths
P1.6.4.4
Refraction of water waves
P1.6.4.5
Doppler effect in water waves
P1.6.4.6
Reflection of water waves at a straight obstacle

P1.6.4.7
Reflection of water waves at curved obstacles

Exciting circular and straight water waves (P1.6.4.1)

Cat. No.	Description	\bar{j} $\substack{\text { ¢ }}$ \vdots		$\begin{aligned} & \text { m } \\ & \underset{i}{6} \\ & \dot{i} \end{aligned}$	T + \vdots 0 \vdots \vdots
401501	Ripple tank D	1	1	1	1
LDS 00001	Stopwatch, digital	1			
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1		1	

Convergent beam path behind a biconvex lens (P1.6.4.4)

Fundamental concepts of wave propagation can be explained particularly clearly using water waves, as their propagation can be observed with the naked eye.
The experiment P1.6.4.1 investigates the properties of circular and straight waves. The wavelength λ is measured as a function of each excitation frequency f and these two values are used to calculate the wave velocity

$$
v=f \cdot \lambda
$$

The aim of the experiment P1.6.4.2 is to verify Huygens' principle. In this experiment, straight waves strike an edge, a narrow slit and a grating. We can observe a change in the direction of propagation, the creation of circular waves and the superposing of circular waves to form one straight wave.
The experiments P1.6.4.3 and P1.6.4.4 aim to study the propagation of water waves in different water depths. A greater water depth corresponds to a medium with a lower refractive index n. At the transition from one "medium" to another, the law of refraction applies:

$$
\begin{aligned}
& \frac{\sin \alpha_{1}}{\sin \alpha_{2}}=\frac{\lambda_{1}}{\lambda_{2}} \\
& \alpha_{1}, \alpha_{2}: \text { angles with respect to axis of incidence in zone } 1 \text { and } 2 \\
& \lambda_{1}, \lambda_{2}: \text { wavelength in zone } 1 \text { and } 2
\end{aligned}
$$

A prism, a biconvex lens and a biconcave lens are investigated as practical applications for water waves.
The experiment P1.6.4.5 observes the Doppler effect in circular water waves for various speeds u of the wave exciter.
The experiments P1.6.4.6 and P1.6.4.7 examine the reflection of water waves. When straight and circular waves are reflected at a straight wall, the "wave beams" obey the law of reflection. When straight waves are reflected by curved obstacles, the originally parallel wave rays travel in either convergent or divergent directions, depending on the curvature of the obstacle. We can observe a focusing to a focal point, respectively a divergence from an apparent focal point, just as in optics.

INTERFERENCE OF WATER WAVES

P1.6.5. 1

Two-beam interference of water waves

P1.6.5.2

Lloyd's experiment on water waves

P1.6.5.3

Diffraction of water waves at a slit and at an obstacle

P1.6.5.4

Diffraction of water waves at a multiple slit

P1.6.5.5

Standing water waves in front of a reflecting barrier

Two-beam interference of water waves (P1.6.5.1)

Diffraction of water waves at a narrow obstacle (P1.6.5.3)

Experiments on the interference of waves can be carried out in an easily understandable manner, as the diffraction objects can be seen and the propagation of the diffracted waves observed with the naked eye.
In the experiment P1.6.5.1, the interference of two coherent circular waves is compared with the diffraction of straight waves at a double slit. The two arrangements generate identical interference patterns.
The experiment P1.6.5.2 reproduces Lloyd's experiment on generating twobeam interference. A second wave coherent to the first is generated by reflection at a straight obstacle. The result is an interference pattern which is equivalent to that obtained for two-beam interference with two discrete coherent exciters.

In the experiment P1.6.5.3, a straight wave front strikes slits and obstacles of various widths. A slit which has a width of less than the wavelength acts like a point-shaped exciter for circular waves. If the slit width is significantly greater than the wavelength, the straight waves pass the slit essentially unaltered. Weaker, circular waves only propagate in the shadow zones behind the edges. When the slit widths are close to the wavelength, a clear diffraction pattern is formed with a broad main maximum flanked by lateral secondary maxima. When the waves strike an obstacle, the two edges of the obstacle act like excitation centers for circular waves. The resulting diffraction pattern depends greatly on the width of the obstacle.
The object of the experiment P1.6.5.4 is to investigate the diffraction of straight water waves at double, triple and multiple slits which have a fixed slit spacing d. This experiment shows that the diffraction maxima become more clearly defined for an increasing number n of slits. The angles at which the diffraction maxima are located remain the same.
The experiment P1.6.5.5 demonstrates the generation of standing waves by means of reflection of water waves at a wall arranged parallel to the wave exciter. The standing wave demonstrates points at regular intervals at which the crests and troughs of the individual traveling and reflected waves cancel each other out. The oscillation is always greatest at the midpoint between two such nodes.

SOUND WAVES

P1.7.1.2
Acoustic beats

- Displaying on the oscilloscope

P1.7.1.3
Acoustic beats

- Recording with CASSY

Acoustic beats - Recording with CASSY (P1.7.1.3)

Cat. No.	Description	끛ㅊ̇	끛춫
41472	Resonance tuning forks, pair	1	1
58626	Multi-purpose microphone	1	1
575302	Oscill oscope 30 MHz , digital, PT1265	1	
57535	Adapter, BNC/4 mm, 2-pole	1	
30011	Saddle base	1	1
524013	Sensor-CASSY 2		1
524220	CASSY Lab 2		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)		1

Acoustics is the study of sound and all its phenomena. This discipline deals with both the generation and the propagation of sound waves.
The experiment P1.7.1.2 demonstrates the wave nature of sound. Here, acoustic beats are investigated as the superposing of two sound waves generated using tuning forks with slightly different frequencies f_{1} and f_{2}. The beat signal is received via a microphone and displayed on the oscilloscope. By means of further (mis-) tuning of one tuning fork by moving a clamping screw, the beat frequency

$$
f_{s}=f_{2}-f_{1}
$$

is increased, and the beat period (i. e. the interval between two nodes of the beat signal)

$$
T_{s}=\frac{1}{f_{s}}
$$

is reduced.
In the experiment P1.7.1.3, the acoustic beats are recorded and evaluated via the CASSY computer interface device. The individual frequencies f_{1} and f_{2}, the oscillation frequency f and the beat frequency f_{S} are determined automatically and compared with the calculated values

$$
\begin{aligned}
& f=\frac{f_{1}+f_{2}}{2} \\
& f_{s}=f_{2}-f_{1}
\end{aligned}
$$

Acoustic beats (P1.7.2.1)

MECHANICS

ACOUSTICS

OSCILLATIONS OF A STRING

P1.7.2. 1
Determining the oscillation frequency of a string as a function of the string length and tension

Determining the oscillation frequency of a string as a function of the string length and tension (P1.7.2.1)

Cat. No.	Description	-
41401	Monochord	1
314201	Precision dynamometer, 100.0 N	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
524074	Timer S	1
33746	Fork-type light barrier	1
50116	Multi-core cable, 6-pole, 1.5 m	1
30002	Stand base, V-shaped, small	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1

In the fundamental oscillation, the string length s of an oscillating string corresponds to half the wavelength. Therefore, the following applies for the frequency of the fundamental oscillation:

$$
f=\frac{c}{2 s}
$$

where the phase velocity c of the string is given by

$$
c=\sqrt{\frac{F}{A \cdot \rho}}
$$

F : tensioning force, A : area of cross-section, ρ : density
In the experiment P1.7.2.1, the oscillation frequency of a string is determined as a function of the string length and tensioning force. The measurement is carried out using a forked light barrier and the computer-assisted measuring system CASSY, which is used here as a high-resolution stop-clock. The aim of the evaluation is to verify the relationships

$$
f \propto \sqrt{F}
$$

and

$$
f \propto \frac{1}{s}
$$

Frequency f as a function of the string length $s(P 1.7 .2 .1)$

WAVELENGTH AND VELOCITY OF SOUND

P1.7.3.1

Kundt's tube: determining the wavelength of sound with the cork-powder method

P1.7.3.2
Determining the wavelength of standing sound waves

Kundt's tube: determining the wavelength of sound with the cork-powder method (P1.7.3.1)

Cat. No.	Description	$\stackrel{\Gamma}{\stackrel{1}{j}}$	
41301	Kundt's tube	1	
46097	Metal rule, 0.5 m	1	
58626	Multi-purpose microphone		1
58708	Broad-band speaker		1
522621	Function generator S 12		1
58766	Reflection plate		1
30011	Saddle base		3
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$		1
531120	Multimeter LDanalog 20		1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair		1

Determining the wavelength of standing sound waves (P1.7.3.2)

Just like other waves, reflection of sound waves can produce standing waves in which the oscillation nodes are spaced at

$$
d=\frac{\lambda}{2}
$$

Thus, the wavelength λ of sound waves can be easily measured at standing waves.
The experiment P1.7.3.1 investigates standing waves in Kundt's tube. These standing waves are revealed in the tube using cork powder which is stirred up in the oscillation nodes. The distance between the oscillation nodes is used to determine the wavelength λ.
In the experiment P1.7.3.2, standing sound waves are generated by reflection at a barrier. This setup uses a function generator and a loudspeaker to generate sound waves in the entire audible range. A microphone is used to detect the intensity minima, and the wavelength λ is determined from their spacings.

WAVELENGTH AND VELOCITY OF SOUND

P1.7.3.3

Determining the velocity of sound in air as a function of the temperature

P1.7.3.4
Determining the velocity of sound in gases

Determining the velocity of sound in air as a function of the temperature (P1.7.3.3)

Cat. No.	Description	m	+
41360	Apparatus for sound velocity	1	1
516249	Stand for tubes and coils	1	1
58707	Tweeter	1	1
58626	Multi-purpose microphone	1	1
524013	Sensor-CASSY 2	1	1
524220	CASSY Lab 2	1	1
524034	Timer box	1	1
5240673	$\mathrm{NiCr}-\mathrm{Ni}$ adapter S, type K	1	
529676	Temperature probe, $\mathrm{NiCr}-\mathrm{Ni}$, 1.5 mm , type K	1	
726890	DC-High Current Power Supply 1... $32 \mathrm{~V} / 0 . . .20 \mathrm{~A}$	1	
30011	Saddle base	2	2
46097	Metal rule, 0.5 m	1	1
50144	Connecting leads, $19 \mathrm{~A}, 25 \mathrm{~cm}$, red/blue, pair	1	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	2	1
660999	Minican pressurised gas canister, carbon dioxide		1
660984	Minican pressurised gas canister, helium		1
660985	Minican pressurised gas canister, neon		1
660980	Fine regulating valve for minican gas canisters		1
667194	Silicone tubing $7 \mathrm{~mm} \emptyset, 1 \mathrm{~m}$		1
604481	Rubber tubing, $1 \mathrm{~m} \times 4 \mathrm{~mm}$ diam., DIN 12865		1
604510	Tubing connector, $4 \ldots .15 \mathrm{~mm}$		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1

Sound waves demonstrate only slight dispersion, i.e. group and phase velocities demonstrate close agreement for propagation in gases. Therefore, we can determine the velocity of sound c as simply the propagation speed of a sonic pulse. In ideal gases, we can say

$$
\begin{aligned}
& c=\sqrt{\frac{\rho \cdot \kappa}{\rho}} \text { where } \kappa=\frac{C_{p}}{C_{V}} \\
& p: \text { pressure, } \rho: \text { density, } \kappa: \text { adiabatic coefficient } \\
& C_{p}, C_{\mathrm{V}}: \text { specific heat capacities }
\end{aligned}
$$

The experiment P1.7.3.3 measures the velocity of sound in the air as a function of the temperature ϑ and compares it with the linear function resulting from the temperature-dependency of pressure and density

$$
c(\vartheta)=c(0)+0.6 \cdot \frac{\vartheta}{{ }^{\circ} \mathrm{C}} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The value $c(0)$ determined using a best-fit straight line and the literature values $p(0)$ and $\rho(0)$ are used to determine the adiabatic coefficient κ of air according to the formula

$$
\kappa=\frac{c(0)^{2} \cdot \rho(0)}{p(0)}
$$

The experiment P1.7.3.4 determines the velocity of sound c in carbon dioxide and in the inert gases helium and neon. The evaluation demonstrates that the great differences in the velocities of sound of gases are essentially due to the different densities of the gases. The differences in the adiabatic coefficients of the gases are comparatively small.

WAVELENGTH AND

 VELOCITY OF SOUND
P1.7.3.5

Determining the velocity of sound in solids

Determining the velocity of sound in solids (P1.7.3.5)

Cat. No.	Description	¢
413651	Metal rods, 1.5 m , set of 3	1
30046	Stand rod, $150 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
587251	Rochelle salt crystal (piezo-electric element)	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
30107	Simple bench clamp	1
50135	Connecting lead, $32 \mathrm{~A}, 200 \mathrm{~cm}$, red	1
50136	Connecting lead, $32 \mathrm{~A}, 200 \mathrm{~cm}$, blue	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

Velocity of sound in different materials (P1.7.3.5)

In solid bodies, the velocity of sound is determined by the modulus of elasticity E and the density ρ. For the velocity of sound in a long rod, we can say

$$
c=\sqrt{\frac{E}{\rho}}
$$

In the case of solids, measurement of the velocity of sound thus yields a simple method for determining the modulus of elasticity.
The object of the experiment P1.7.3.5 is to determine the velocity of sound in aluminum, copper, brass and steel rods. This measurement exploits the multiple reflections of a brief sound pulse at the rod ends. The pulse is generated by striking the top end of the rod with a hammer, and initially travels to the bottom. The pulse is reflected several times in succession at the two ends of the rod, whereby the pulses arriving at one end are delayed with respect to each other by the time Δt required to travel out and back. The velocity of sound is thus

$$
\begin{aligned}
& c=\frac{2 s}{\Delta t} \\
& s: \text { length of rod }
\end{aligned}
$$

To record the pulses, the bottom end of the rod rests on a piezoelectric element which converts the compressive oscillations of the sound pulse into electrical oscillations. These values are recorded using the CASSY system for computerassisted measured-value recording.

REFLECTION OF ULTRASONIC WAVES

P1.7.4. 1

Reflection of planar ultrasonic waves at a plane surface

P1.7.4.2
Principle of an echo sounder

Reflection of planar ultrasonic waves at a plane surface (P1.7.4.1)

Cat. No.	Description	「	N
416002	Ultrasonic transmitter	1	1
416003	Ultrasonic receiver	1	1
416014	Generator, 40 kHz	1	1
416015	AC amplifier	1	1
389242	Acoustic concave mirror	1	
416020	Sensor holder for concave mirror	1	
575302	Oscilloscope 30 MHz , digital, PT1265	1	1
57524	Screened cable, BNC/4 mm	1	2
460310	Optical bench, S1 profile, 1 m	2	
4603151	Swivel joint with protactor scale and clamp	1	
4603113	Clamp rider with clamp 105/65	2	
58766	Reflection plate	1	1
30040	Stand rod, $10 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	
30127	Stand rod $50 \mathrm{~cm}, 10 \mathrm{~mm} \emptyset$	1	
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1	
666615	Universal bosshead	1	
361051	Bull's eye spirit level, 14 mm diam.	1	
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		1
30011	Saddle base		3
31102	Metal rule, 1 m		1

The ultrasonic waves are generated by the mechanical oscillations of a piezoelectric body in the transducer. By the same token, ultrasonic waves excite mechanical oscillations in the piezoelectric body.
The aim of the experiment P1.7.4.1 is to confirm the law of reflection "angle of incidence $=$ angle of reflection" for ultrasonic waves. In this setup, an ultrasonic transducer as a point-type source is set up in the focal point of a concave reflector, so that flat ultrasonic waves are generated. The flat wave strikes a plane surface at an angle of incidence α and is reflected there. The reflected intensity is measured at different angles using a second transducer. The direction of the maximum reflected intensity is defined as the angle of reflection β. The experiment P1.7.4.2 utilizes the principle of an echo sounder to determine the velocity of sound in the air, as well as to determine distances. An echo sounder emits pulsed ultrasonic signals and measures the time at which the signal reflected at the boundary surface is received. For the sake of simplicity, the transmitter and receiver are set up as nearly as possible in the same place. When the velocity of sound c is known, the time difference t between transmission and reception can be used in the relationship

$$
c=\frac{2 s}{t}
$$

to determine the distance s to the reflector or, when the distance is known, the velocity of sound.

Echo sounder signal (P1.7.4.2)

INTERFERENCE OF ULTRASONIC WAVES

P1.7.5.1

Beating of ultrasonic waves
P1.7.5.2
Interference of two ultrasonic beams

P1.7.5.3

Diffraction of ultrasonic waves at a single slit

P1.7.5.4
Diffraction of ultrasonic waves at a double slit, a multiple slit and a grating

Beating of ultrasonic waves (P1.7.5.1)

Cat. No.	Description	¢	N	n	+
416002	Ultrasonic transmitter	2	2	1	1
416003	Ultrasonic receiver	1	1	1	1
416015	AC amplifier	1	1	1	1
416014	Generator, 40 kHz	2	1	1	1
575302	Oscilloscope 30 MHz , digital, PT1265	1			
57524	Screened cable, BNC/4 mm	1			
30011	Saddle base	3	2		
311902	Rotating platform with motor drive		1	1	1
524013	Sensor-CASSY 2		1	1	1
524220	CASSY Lab 2		1	1	1
524031	Current source box		1	1	1
521546	DC Power Supply 0... $16 \mathrm{~V} / 0 \ldots 5 \mathrm{~A}$		1	1	1
501031	Connecting lead, protected, 8 m , screened		1	1	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$		1	1	
30001	Stand base, V-shaped, large		1	1	1
30002	Stand base, V-shaped, small		1	1	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$		1	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		1	1	1
30101	Leybold multiclamp		1	1	1
500424	Connecting lead 19 A, 50 cm , black		1	1	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair		2	2	2
416020	Sensor holder for concave mirror			1	1
416021	Frame with holder			1	1
416030	Grating and slit for ultrasonics experiments			1	1
389242	Acoustic concave mirror			1	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)		1	1	1

Experiments on the interference of waves can be carried out in a comprehensible manner using ultrasonic waves, as the diffraction objects are visible with the naked eye. In addition, it is not difficult to generate coherent sound beams. In the experiment P1.7.5.1, beating of ultrasonic waves is investigated using two transducers which are operated using slightly different frequencies f_{1} and f_{2}. The signal resulting from the superposing of the two individual signals is interpreted as an oscillation with the periodically varying amplitude

$$
A(t) \sim \cos \left(\pi \cdot\left(f_{2}-f_{1}\right) \cdot t\right)
$$

The beat frequency f_{S} determined from the period T_{S} between two beat nodes and compared with the difference $f_{2}-f_{1}$.
In the experiment P1.7.5.2, two identical ultrasonic transducers are operated by a single generator. These transducers generate two coherent ultrasonic beams which interfere with each other. The interference pattern corresponds to the diffraction of flat waves at a double slit when the two transducers are operated in phase. The measured intensity is thus greatest at the diffraction angles α where

$$
\sin \alpha=n \cdot \frac{\lambda}{d} \text { where } n=0, \pm 1, \pm 2, \ldots
$$

λ : wavelength, d : spacing of ultrasonic transducers

The experiments P1.7.5.3 and P1.7.5.4 use an ultrasonic transducer as a pointshaped source in the focal point of a concave reflector. The flat ultrasonic waves generated in this manner are diffracted at a single slit, a double slit and a multiple slit. An ultrasonic transducer and the slit are mounted together on the turntable for computer-assisted recording of the diffraction figures. This configuration measures the diffraction at a single slit for various slit widths b and the diffraction at multiple slits and gratings for different numbers of slits N.

ACOUSTIC DOPPLER EFFECT

P1.7.6.1
Investigating the Doppler effect with ultrasonic waves

P1.7.6.2

Investigating the Doppler effect with ultrasonic waves - Recording and evaluating with CASSY

Investigating the Doppler effect with ultrasonic waves (P1.7.6.1)

Cat. No.	Description	¢	
416002	Ultrasonic transmitter	1	1
416003	Ultrasonic receiver	1	1
416015	AC amplifier	1	1
416014	Generator, 40 kHz	1	1
501031	Connecting lead, protected, 8 m , screened	1	1
501644	Two-way adapters, black, set of 6	1	1
68544	Battery 1.5 V (AA)	2	2
33707	Trolley with electric drive	1	1
46081	Precision metal rail, 100 cm	2	2
46085	Rail connector	1	1
46088	Feet for metal rails, pair	1	1
46095	Clamp rider	2	2
416031	Accessories for acoustic Doppler effect	1	1
575471	Counter S	1	
575302	Oscilloscope 30 MHz , digital, PT1265	1	
57524	Screened cable, BNC/4 mm	1	
31327	Hand-held stop-watch, 60s/0.2s	1	
30002	Stand base, V-shaped, small	1	2
30011	Saddle base	1	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1	1
30043	Stand rod, $75 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1
30101	Leybold multiclamp	1	2
608100	Stand ring with clamp, 70 mm diam.	1	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1	1
524013	Sensor-CASSY 2		1
524220	CASSY Lab 2		1
524034	Timer box		1
524073	Laser motion sensor S		1
30040	Stand rod, $10 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)		1

The change in the observed frequency for a relative motion of the transmitter and receiver with respect to the propagation medium is called the acoustic Doppler effect. If the transmitter with the frequency f_{0} moves at a velocity v relative to a receiver at rest, the receiver measures the frequency

$$
f=\frac{f_{0}}{1-\frac{v}{c}}
$$

c : velocity of sound

If, on the other hand, the receiver moves at a velocity v relative to a transmitter at rest, we can say

$$
f=f_{0} \cdot\left(1+\frac{v}{c}\right)
$$

The change in the frequeny $f-f_{0}$ is proportional to the frequency f_{0}. Investigation of the acoustic Doppler effect on ultrasonic waves thus suggests itself. In the experiment P1.7.6.1, two ultrasonic transducers are used as the transmitter and the receiver. One transducer is mounted on a measuring trolley with electric drive, while the other transducer is at rest on the lab bench. The frequency of the received signal is measured using a digital counter. To determine the speed of the transducer in motion, the time Δt which the measuring trolley requires to traverse the measuring distance is measured using a stopclock.
In the experiment P1.7.6.2, two ultrasonic transducers are used as the transmitter and the receiver. One transducer is mounted on a measuring trolley with electric drive, while the other transducer is at rest on the lab bench. The frequency of the received signal is measured using a high-resolution digital counter inside the CASSY. The Sensor-CASSY 2 in conjunction with the laser motion sensor S measures the speed of the transducer in motion.

Propagation of sound with the sound source and the observer at rest (P1.7.6.1)

FOURIER ANALYSIS

P1.7.7.1

Investigating fast Fourier transforms: simulation of Fourier analysis and Fourier synthesis

P1.7.7.2

Fourier analysis of the periodic signals of a function generator

P1.7.7.3

Fourier analysis of an electric oscillator circuit

P1.7.7.4

Fourier analysis of sounds

Fourier analysis of an electric oscillator circuit (P1.7.7.3)

Cat. No.	Description	-	N	n	\pm \vdots
524220	CASSY Lab 2	1	1	1	1
522621	Function generator S 12		1		
524013	Sensor-CASSY 2		1	1	1
50145	Connecting lead 19 A, 50 cm , red/blue, pair		1		
56214	Coil, 500 turns			2	
57815	Capacitor, 1μ F, STE 2/19			2	
57910	Push button (NO), STE 2/19			1	
57719	Resistor, 1Ω, STE 2/19			1	
57720	Resistor, 10Ω, STE 2/19			1	
57721	Resistor 5.1 Ohm, STE 2/19			1	
57723	Resistor, 20Ω, STE 2/19			1	
57732	Resistor 100 Ohm, STE 2/19			1	
57681	Plug-in board safety socket, 20/10			1	
500621	Safety connecting lead 50 cm , red			4	
500622	Safety connecting lead 50 cm , blue			4	
524059	Microphone S				1
	additionally required: PC with Windows XP/Vista/7/8/10 ($\times 86$ or $\times 64$)	1	1	1	1

Fourier analysis and synthesis of sound waves are important tools in acoustics. Thus, for example, knowing the harmonics of a sound is important for artificial generation of sounds or speech.
The experiments P1.7.7.1 and 1.7.7.2 investigate Fourier transforms of periodic signals which are either numerically simulated or generated using a function generator.
In the experiment P1.7.7.3, the frequency spectrum of coupled electric oscillator circuits is compared with the spectrum of an uncoupled oscillator circuit. The Fourier transform of the uncoupled, damped oscillation is a Lorentz curve

$$
L(f)=L_{0} \cdot \frac{\gamma^{2}}{\left(f-f_{0}\right)^{2}+\gamma^{2}}
$$

in which the width increases with the ohmic resistance of the oscillator circuit. The Fourier-transformed signal of the coupled oscillator circuits shows the split into two distributions lying symmetrically around the uncoupled signal, with their spacing depending on the coupling of the oscillator circuits.
The aim of the experiment P1.7.7.4 is to conduct Fourier analysis of sounds having different tone colors and pitches. As examples, the vowels of the human voice and the sounds of musical instruments are analyzed. The various vowels of a language differ mainly in the amplitudes of the harmonics. The fundamental frequency f_{0} depends on the pitch of the voice. This is approx. 200 Hz for highpitched voices and approx. 80 Hz for low-pitched voices. The vocal tone color is determined by variations in the excitation of the harmonics. The audible tones of musical instruments are also determined by the excitation of harmonics.

Coupled oscillator circuit with its Fourier transform (P1.7.7.3)

ULTRASOUND IN MEDIA

P1.7.8. 1

Determination of the velocity of sound in liquids - standing ultrasonic waves as optical grating

Determination of the velocity of sound in liquids - standing ultrasonic waves as optical grating (P1.7.8.1)

Cat. No.	Description	-
41711	Ultrasound generator, 4 MHz	1
46032	Optical bench with standardised profile, 1 m	1
460374	Optics rider, 90/50	5
471791	Diode laser, $635 \mathrm{~nm}, 1 \mathrm{~mW}$	1
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$	1
46025	Prism table	1
47702	Plate glass cell (cuvette), $50 \times 100 \times 50 \mathrm{~mm}$	1
460380	Cantilever arm	1
38235	Thermometer, $-10 \ldots+50^{\circ} \mathrm{C} / 0.1 \mathrm{~K}$	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1
30101	Leybold multiclamp	1
441531	Screen	1
6753410	Water, pure, 51	1
6721210	Glycerin, 99% \% 250 ml	1
6719740	Ethanol, denaturated, 250 ml	1
6735700	Sodium chloride 250 g	1

Todays acousto-optic modulators are important building parts for telecommunication and rely on the interaction of sound and light in media. Density variations created by ultrasound are used as diffraction gratings.
Experiment P1.7.8. measures the wavelength of a standing ultrasound wave in different liquids. The local variation of density in the liquid is made visible on screen by geometrical projection.
In addition the experiment demonstrates the classic Debye-Sears-Effect, i.e. the diffraction of laser light by a phase grating created by ultrasound in a liquid. This is the basic principle of an acusto-optic modulator.

Projection of a standing wave pattern in water (P1.7.8.1)

BOUYANCY

P1.8.2.1
Confirming Archimedes' principle
P1.8.2.2
Measuring the buoyancy as a function of the immersion depth

Confirming Archimedes' principle (P1.8.2.1)

Cat. No.	Description	¢	N
36202	Archimedes' cylinder	1	1
315011	Hydrostatic balance	1	
31531	Set of weights, 10 mg to 200 g	1	
664111	Beaker, DURAN, 100 ml , tall	1	
664113	Beaker, DURAN, 250 ml , tall	1	1
6721210	Glycerin, 99%, 250 ml	1	1
6719720	Ethanol, denaturated, 11	1	1
314141	Precision dynamometer, 1 N		1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$		1

Archimedes' principle states that the buoyancy force Facting on any immersed body corresponds to the weight G of the displaced liquid.
The experiment P1.8.2.1 verifies Archimedes' principle. In this experiment, a hollow cylinder and a solid cylinder which fits snugly inside it are suspended one beneath the other on the beam of a balance. The deflection of the balance is compensated to zero. When the solid cylinder is immersed in a liquid, the balance shows the reduction in weight due to the buoyancy of the body in the liquid. When the same liquid is filled in the hollow cylinder the deflection of the balance is once again compensated to zero, as the weight of the filled liquid compensates the buoyancy.
In the experiment P1.8.2.2, the solid cylinder is immersed in various liquids to the depth h and the weight
$G=\rho \cdot g \cdot A \cdot h$
$\rho:$ density, $g:$ gravitational acceleration, $A:$ cross-section
of the displaced liquid is measured as the buoyancy Fusing a precision dynamometer. The experiment confirms the relationship

$$
F \sim \rho
$$

As long as the immersion depth is less than the height of the cylinder, we can say:

$$
F \sim h
$$

At greater immersion depths the buoyancy remains constant.

MECHANICS
AERO- AND HYDRODYNAMICS

VISCOSITY

P1.8.3.1

Assembling a falling-ball viscosimeter to determine the viscosity of viscous fluids

Assembling a falling-ball viscosimeter to determine the viscosity of viscous fluids (P1.8.3.1)

Cat. No.	Description	¢-
379001	Guinea-and-feather apparatus	1
33621	Holding magnet	1
35254	Steel ball, 16 mm	1
33625	Holding magnet adapter with a release mechanism	1
575471	Counter S	1
51048	Magnets, 35 mm Ø, pair	1
30001	Stand base, V-shaped, large	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \varnothing$	1
30044	Stand rod, $100 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30101	Leybold multiclamp	1
30111	Clamp with jaw clamp	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1
6721210	Glycerin, 99%, 250 ml	6
59008	Measuring cylinder 100 ml	1^{*}
31154	Precision vernier callipers	1^{*}
OHC R221	Compact Balance CR221, $220 \mathrm{~g}: 0.1 \mathrm{~g}$	1^{*}

[^1]The falling-ball viscometer is used to determine the viscosity of liquids by measuring the falling time of a ball. The substance under investigation is filled in the vertical tube of the viscosimeter, in which a ball falls through a calibrated distance. The resulting falling time t is a measure of the dynamic viscosity η of the liquid according to the equation

$$
\begin{aligned}
& \eta=K \cdot\left(\rho_{1}-\rho_{2}\right) \cdot t \\
& \rho_{2}: \text { density of the liquid under study }
\end{aligned}
$$

whereby the constant K and the ball density ρ_{1} may be read from the test certificate of a commercially available viscosimeter.
The object of the experiment P1.8.3.1 is to set up a falling-ball viscosimeter and to study this measuring method, using the viscosity of glycerine as an example.

MECHANICS

VISCOSITY

P1.8.3.2
Falling-ball viscosimeter: measuring the viscosity of sugar solutions as a function of the concentration

P1.8.3.3
Falling-ball viscosimeter: measuring the viscosity of Newtonian liquids as a function of the termperature

Falling-ball viscosimeter: measuring the viscosity of sugar solutions as a function of the concentration (P1.8.3.2)

Cat. No.	Description	N	m \sim ¢ ¢
665906	Höppler falling ball viscometer	1	1
31327	Hand-held stop-watch, 60s/0.2s	1	1
6667681	Circulation thermostat SC 100-S5P		1
667194	Silicone tubing $7 \mathrm{~mm} \emptyset, 1 \mathrm{~m}$		2
6753410	Water, pure, 51		2

The experiment P1.8.3.2 investigates the relationship between viscosity and concentration using concentrated sugar solutions at room temperature.
In the experiment P1.8.3.3, the temperature regulation chamber of the viscosimeter is connected to a circulation thermostat to measure the dependency of the viscosity of a Newtonian fluid (e. g. olive oil) on the temperature.

MECHANICS

AERO- AND HYDRODYNAMICS

VISCOSITY

P1.8.3.4
Hagen-Poiseuille Law

Hagen-Poiseuille Law (P1.8.3.4)

Cat. No.	Description	$\stackrel{+}{+}$
665195	Capillary tube, $300 \mathrm{~mm} \times 5 \mathrm{~mm}, 0.4 \mathrm{~mm}$ diam.	1
665196	Capillary tube, $300 \mathrm{~mm} \times 8 \mathrm{~mm}, 2 \mathrm{~mm}$ diam.	1
665205	Capillary tube, $300 \mathrm{~mm} \times 8 \mathrm{~mm}, 0,8 \mathrm{~mm}$ diam.	1
667510	Capillary tube	1
46021	Holder for plug-in elements	1
59002	Small clip plug	2
LDS 00001	Stopwatch, digital	1
38221	Stirring thermometer $-10 \ldots+110^{\circ} \mathrm{C}$	1
31102	Metal rule, 1 m	1
36205	Discharge vessel	1
665752	Measuring cylinder 25 ml , with plastic base	1
608160	Mohr clip, 50 mm	1
665227	Connector, straight, 4 ... 8 mm diam.	1
667194	Silicone tubing $7 \mathrm{~mm} \emptyset, 1 \mathrm{~m}$	1
667197	Silicone tubing, 4 mm diam., 1 m	1
30001	Stand base, V-shaped, large	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1
30044	Stand rod, $100 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30109	Bosshead S	2
64801	Storage tray S8-FN	1
6753400	Water, pure, 1 I	1
460135	Ocular with scale	${ }^{*}$
460317	Optical bench, S1 profile, 0.5 m	${ }^{*}$
460312	Clamp rider with clamp 45/35	2^{*}

[^2]For a Newtonian liquid (i.e. laminar case) the volume flow rate J and the pressure difference Δp are related by the Hagen-Poiseuille law:

$$
\begin{aligned}
& J=\frac{\pi \cdot \Delta p \cdot r^{4}}{8 \cdot \eta \cdot L} \\
& \eta: \text { Viscosity of the liquid, } \\
& \text { L: Length of the cappillary tube, } \\
& r \text { : radius of the capillary tube }
\end{aligned}
$$

In the experiment P1.8.3.4 the Hagen-Poiseuille law can be verified by using several kind of capillary tubes and various effective level differences to get variant pressure difference.

MECHANICS AERO- AND HYDRODYNAMICS

SURFACE TENSION

P1.8.4. 1
Measuring the surface tension using the "break-away" method

P1.8.4.2

Measuring the surface tension using the "break-away" method - Recording and evaluating with CASSY

Measuring the surface tension using the "break-away" method (P1.8.4.1)

Cat. No.	Description	\square - - \vdots	N + ∞ \vdots \vdots
36746	Surface tension determination device	1	1
664175	Crystallisation dish, 95 mm diam., 300 ml	1	1
314111	Precision dynamometer, 0.1 N	1	
31153	Vernier callipers	1	1
30076	Laboratory stand II	1	1
30002	Stand base, V-shaped, small	1	1
30043	Stand rod, $75 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	
30108	Clamp with hook	1	
6719740	Ethanol, denaturated, 250 ml	1	1
6753400	Water, pure, 11	1	1
524060	Force sensor S, $\pm 1 \mathrm{~N}$		1
524005 W	Mobile-CASSY 2 WiFi		1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		1
30101	Leybold multiclamp		1

To determine the surface tension σ of a liquid, a metal ring is suspended horizontally from a precision dynamometer or a force sensor. The metal ring is completely immersed in the liquid, so that the entire surface is wetted. The ring is then slowly pulled out of the liquid, drawing a thin sheet of liquid behind it. The liquid sheet tears when the tensile force exceeds a limit value

$$
\begin{aligned}
& F=\sigma \cdot 4 \pi \cdot R \\
& R: \text { edge radius }
\end{aligned}
$$

The experiments P1.8.4.1 and P1.8.4.2 determines the surface tension of water and ethanol. It is shown that water has a particularly high surface tension in comparison to other liquids (literature value for water: $0.073 \mathrm{Nm}^{-1}$, for ethanol: $0.022 \mathrm{Nm}^{-1}$).

INTRODUCTORY EXPERIMENTS ON AERODYNAMICS

P1.8.5.1

Static pressure and determination of the volume flow with a Venturi tube Measuring the pressure with the precision manometer

P1.8.5.3

Determining the wind speed with a Prandtl pressure probe - Measuring the pressure with the precision manometer

P1.8.5.4

Static pressure and determination of the volume flow with a Venturi tube Measuring the pressure with a pressure sensor and CASSY

P1.8.5.6

Determining the wind speed with a Prandtl pressure probe - Measuring the pressure with a pressure sensor and CASSY

Static pressure and determination of the volume flow with a Venturi tube - Measuring the pressure with the precision manometer (P1.8.5.1)

Cat. No.	Description	$\begin{aligned} & \bar{i} \\ & \dot{\sim} \\ & \dot{\square} \end{aligned}$		$\begin{aligned} & \dot{+} \\ & \dot{\sim} \\ & \dot{\square} \\ & \dot{\square} \end{aligned}$	0 0 0 \vdots \vdots
373041	Suction and pressure fan	1	1	1	1
373091	Venturi tube with multimanoscope	1		1	
37310	Precision manometer	1	1		
30002	Stand base, V-shaped, small	2	1	1	
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1		1	
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1		
30101	Leybold multiclamp	1		1	
391151	Manometer fluid 100 ml	1	1		
37313	Prandtl pressure probe		1		1
524005 W	Mobile-CASSY 2 WiFi			1	1
524066	Pressure sensor S, $\pm 70 \mathrm{hPa}$			1	1

The study of aerodynamics relies on describing the flow of air through a tube using the continuity equation and the Bernoulli equation. These state that regardless of the cross-section A of the tube, the volume flow

$$
\begin{aligned}
& \dot{V}=v \cdot A \\
& v: \text { flow speed }
\end{aligned}
$$

and the total pressure

$$
\begin{aligned}
& p_{0}=p+p_{\mathrm{s}} \text { where } p_{\mathrm{s}}=\frac{\rho}{2} \cdot v^{2} \\
& p: \text { static pressure, } p_{\mathrm{s}}: \text { dynamic pressure, } \rho \text { : density of air }
\end{aligned}
$$

remain constant as long as the flow speed remains below the speed of sound.
Note: In the experiments P1.8.5.1 and P1.8.5.3, the precision manometer is used to measure pressures. In addition to a pressure scale, it is provided with a further scale which indicates the flow speed directly when measuring with the pressure head sensor. In the experiments P1.8.5.4 and P1.8.5.6 the pressure is measured with a pressure sensor and recorded using the universal measuring instrument Mobile-CASSY.
In order to verify these two equations, the static pressure in a Venturi tube is measured for different cross-sections in the experiments P1.8.5.1 and P1.8.5.4. The static pressure decreases in the reduced cross-section, as the flow speed increases here. These experiments use the Venturi tube to measure the volume flow, too. Using the pressure difference $\Delta p=p_{2}-p_{1}$ between two points with known cross-sections A_{1} and A_{2}, we obtain

$$
v_{1} \cdot A_{1}=\sqrt{\frac{2 \cdot \Delta p \cdot A_{2}^{2}}{\rho \cdot\left(A_{2}^{2}-A_{1}^{2}\right)}}
$$

The experiments P 1.8 .5 .3 and P 1.8 .5 .6 aims to determine flow speeds. Here, dynamic pressure (also called the "pressure head") is measured using the pressure head sensor according to Prandt/ as the difference between the total pressure and the static pressure, and this value is used to calculate the speed at a known density ρ.

MEASURING AIR
 RESISTANCE

P1.8.6.1

Air resistance as a function of the wind speed and body shape

- Measuring the wind speed with the precision manometer

P1.8.6.3

Pressure curve on an airfoil profile - Measuring the pressure with the precision manometer

P1.8.6.4

Air resistance as a function of the wind speed and body shape - Measuring the wind speed with a pressure sensor and CASSY

P1.8.6.6

Pressure curve on an airfoil profile - Measuring the pressure with a pressure sensor and CASSY

Air resistance as a function of the wind speed and body shape - Measuring the wind speed with the precision manometer (P1.8.6.1)

Cat. No.	Description	$\begin{aligned} & \overline{0} \\ & \dot{\alpha} \\ & \dot{\alpha} \end{aligned}$	$$		¢
373041	Suction and pressure fan	1	1	1	1
37306	Open aerodynamics working section	1	1	1	1
373071	Aerodynamics accessories 1	1		1	
373075	Measurement trolley for wind tunnel	1		1	
37314	Sector dynamometer, 0.65 N	1		1	
37313	Prandtl pressure probe	1	1	1	1
37310	Precision manometer	1	1		
30002	Stand base, V-shaped, small	1	2	1	1
30011	Saddle base	1		1	
30043	Stand rod, $75 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1			
391151	Manometer fluid 100 ml	1	1		
37370	Air foil model		1		1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		1	1	
524005 W	Mobile-CASSY 2 WiFi			1	1
524066	Pressure sensor S, $\pm 70 \mathrm{hPa}$			1	1

A flow of air exercises a force F_{W} on a body in the flow which is parallel to the direction of the flow; this force is called the air resistance. This force depends on the flow speed v, the cross-section A of the body perpendicular to the flow direction and the shape of the body. The influence of the body shape is described using the so-called drag coefficient c_{W}, whereby the air resistance is determined as:

$$
F_{w}=c_{w} \cdot \frac{\rho}{2} \cdot v^{2} \cdot A
$$

Note: In the experiments P1.8.6.1 and P1.8.6.3, the precision manometer is used to measure pressures. In addition to a pressure scale, it is provided with a further scale which indicates the flow speed directly when measuring with the pressure head sensor. In the experiments P1.8.6.4 and P1.8.6.6 the pressure is measured with a pressure sensor and recorded using the universal measuring instrument Mobile-CASSY.
The experiments P1.8.6.1 and P1.8.6.4 examines the relationship between the air resistance and the flow speed using a circular disk. The flow speed is measured using a Prandtl pressure probe and the air resistance with a dynamometer. The experiment determines the drag coefficient c_{w} for various flow bodies with equal cross-sections.
The aim of the experiments P1.8.6.3 and P1.8.6.6 is to measure the static pressure p at various points on the underside of an airfoil profile. The measured curve not only illustrates the air resistance, but also explains the lift acting on the airfoil.

MEASUREMENTS IN A WIND TUNNEL

P1.8.7. 1

Measurement of airfoils in a wind tunnel

P1.8.7.3
Verifying the Bernoulli equation

- Measuring with the precision manometer

P1.8.7.4
Verifying the Bernoulli equation - Measuring with a pressure sensor and CASSY

Measurement of airfoils in a wind tunnel (P1.8.7.1)

Cat. No.	Description	「	n ¢ ¢ \vdots	
37312	Wind tunnel	1	1	1
373041	Suction and pressure fan	1	1	1
373075	Measurement trolley for wind tunnel	1	1	1
37308	Aerodynamics accessories 2	1		
37314	Sector dynamometer, 0.65 N	1		
37313	Prandtl pressure probe		1	1
37310	Precision manometer		1	
391151	Manometer fluid 100 ml		1	
524005 W	Mobile-CASSY 2 WiFi			1
524066	Pressure sensor $\mathrm{S}_{1} \pm 70 \mathrm{hPa}$			1

Verifying the Bernoulli equation - Measuring with a pressure sensor and Mobile-CASSY (P1.8.7.4)

The wind tunnel provides a measuring configuration for quantitative experiments on aerodynamics that ensures an airflow which has a constant speed distribution with respect to both time and space. Among other applications, it is ideal for measurements on the physics of flight.
In the experiment P1.8.7.1, the air resistance f_{W} and the lift F_{A} of an airfoil are measured as a function of the angle of attack α of the airfoil against the direction of flow. In a polar diagram, F_{W} is graphed as a function of F_{A} with the angle of attack α as the parameter. From this polar diagram, we can read e. g. the optimum angle of attack. In the experiment, the students also perform comparable measurements on airfoils of their own design. The aim is to determine what form an airfoil must have to obtain the smallest possible quotient $F_{\mathrm{W}} / F_{\mathrm{A}}$ at a given angle of attack α.
The experiments P 1.8 .7 .3 and P 1.8 .7 .4 verify the Bernoulli equation. The difference between the total pressure and the static pressure is measured as a function of the cross-section, whereby the cross-section of the wind tunnel is gradually reduced by means of a built-in ramp. If we assume that the continuity equation applies, the cross-section A provides a measure of the flow speed v due to

$$
\begin{aligned}
& v=\frac{v_{0} \cdot A_{0}}{A} \\
& v_{0}: \text { flow speed at cross-section } A_{0}
\end{aligned}
$$

The experiment verifies the following relationship, which follows from the Bernoulli equation:

$$
\not \subset p \sim \frac{1}{A^{2}}
$$

P2 HEAT

P2.1 THERMAL EXPANSION 59
P2.2 HEAT TRANSFER 62
P2.3 HEAT AS A FORM OF ENERGY 64
P2.4 PHASE TRANSITIONS 68
P2.5 KINETIC THEORY OF GASES 71
P2.6 THERMODYNAMIC CYCLE 74

P2 HEAT

P2.1 THERMAL EXPANSION
P2.1.1 Thermal expansion of solids 59
P2.1.2 Thermal expansion of liquids 60
P2.1.3 Thermal anomaly of water 61
P2.2 HEAT TRANSFER
P2.2.1 Thermal conductivity 62
P2.2.2 Solar collector 63
P2.3 HEAT AS A FORM OF ENERGY
P2.3.1 Mixing temperatures 64
P2.3.2 Heat capacities 65
P2.3.3 Converting mechanical energy into heat 66
P2.3.4 Converting electrical energy into heat 67
P2.4 PHASE TRANSITIONS
P2.4.1 Latent heat and vaporization heat 68
P2.4.2 Measuring vapor pressure 69
P2.4.3 Critical temperature 70
P2.5 KINETIC THEORY OF GASES
P2.5.2 Gas laws 71
P2.5.3 Specific heat of gases 72
P2.5.4 Real gases 73
P2.6 THERMODYNAMIC CYCLE
P2.6.1 Hot-air engine: qualitative experiments 74
P2.6.2 Hot-air engine: quantitative experiments 75-76
P2.6.3 Heat pump 77

THERMAL EXPANSION OF SOLIDS

P2.1.1.2

Thermal expansion of solids

- Measuring using the expansion apparatus

P2.1.1.3

Measuring the linear expansion of solids as a function of temperature

P2.1.1.4
Thermal expansion of solids

- Recording and evaluating with CASSY

Thermal expansion of solids - Measuring using the expansion apparatus (P2.1.1.2)

Cat. No.	Description	さ		
381341	Longitudinal expansion apparatus D	1	1	
361152	Dial gauge with holder	1	1	
38234	Thermometer, $-10 \ldots+110^{\circ} \mathrm{C} / 0.2 \mathrm{~K}$	1	1	1
30328	Steam generator	1		
664185	Petri dishes	1		
667194	Silicone tubing $7 \mathrm{~mm} \emptyset, 1 \mathrm{~m}$	1	2	1
6667681	Circulation thermostat SC 100-S5P		1	
6753410	Water, pure, 51		2	
381332	Aluminium tube, $44 \mathrm{~cm} \times 8 \mathrm{~mm}$ diam.			1
381333	Iron tube, $44 \mathrm{~cm} \times 8 \mathrm{~mm}$ diam.			1
6672545	Rubber stopper with hole, 17...23 mm \varnothing			1
664248	Erlenmeyer flask, Boro $3.3,50 \mathrm{ml}$, narrow neck			1
665226	Connector, straight, 6/8 mm \emptyset			1
68653	Round tin with cap			1
524013	Sensor-CASSY 2			1
524220	CASSY Lab 2			1
524082	Rotary motion sensor S			1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$			1
30121	Stand base MF			2
30127	Stand rod $50 \mathrm{~cm}, 10 \mathrm{~mm}$ ø			2
30109	Bosshead S			2
666615	Universal bosshead			1
666555	Universal clamp $0 . . .80 \mathrm{~mm}$			1
666573	Stand ring with stem $100 \mathrm{~mm} \emptyset$			1
666685	Wire gauze $160 \mathrm{~mm} \times 160 \mathrm{~mm}$			1
666711	Butane gas burner			1
666712 ET3	Butane cartridge, 190 g , set of 3			1
	additionally required: PC with Windows XP/Vista/7/8/10 ($\times 86$ or $\times 64$)			1

The relationship between the length s and the temperature ϑ of a solid body is approximately linear:

$$
\begin{aligned}
& s=s_{0} \cdot(1+\alpha \cdot \vartheta) \\
& s_{0}: \text { length at } 0^{\circ} \mathrm{C}, \vartheta: \text { temperature in }{ }^{\circ} \mathrm{C}
\end{aligned}
$$

The linear expansion coefficient α is determined by the material of the solid body. We can conduct measurements on this topic using e.g. thin tubes through which hot water or steam is flowing.
The experiment P2.1.1.2 measures the increase in length of various tube samples between room temperature and steam temperature using the expansion apparatus. The effective length s_{0} of each tube can be defined as 200,400 or 600 mm .
In the experiment P2.1.1.3, a circulation thermostat is used to heat the water, which flows through various tube samples. The expansion apparatus measures the change in the lengths of the tubes as a function of the temperature ϑ.
In the experiment P2.1.1.4, steam is channeled through different tube samples. The thermal expansion is measured with a rotary motion sensor.

HEAT

THERMAL EXPANSION

THERMAL EXPANSION OF LIQUIDS

P2.1.2.1
Determination of volumetric expansion coefficient of liquids

P2.1.2.2

Determination of volumetric expansion coefficient of liquids - Measuring with Mobile-CASSY

Determination of volumetric expansion coefficient of liquids - Measuring with Mobile-CASSY (P2.1.2.2)

Cat. No.	Description		N N Ṅ N
38215	Dilatometer	1	1
38234	Thermometer, $-10 \ldots+110^{\circ} \mathrm{C} / 0.2 \mathrm{~K}$	1	
666767	Hotplate, 1500 W, 180 mm Ø	1	1
664104	Beaker, DURAN, 400 ml , squat	1	1
31505	Single-pan suspension balance 311	1	1
30002	Stand base, V-shaped, small	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1
30101	Leybold multiclamp	2	2
666555	Universal clamp 0... 80 mm	2	2
6719720	Ethanol, denaturated, 1 I	1	1
524005 W	Mobile-CASSY 2 WiFi		1

In general, liquids expand more than solids when heated. The relationship between the Volume V and the temperature ϑ of a liquid is approximately linear here:

$$
\begin{aligned}
& V=V_{0} \cdot(1+\gamma \cdot \vartheta) \\
& V_{0}: \text { volume at } 0^{\circ} \mathrm{C}, \vartheta: \text { temperature in }{ }^{\circ} \mathrm{C}
\end{aligned}
$$

When determining the volumetric expansion coefficient γ, it must be remembered that the vessel in which the liquid is heated also expands.
In the experiments P2.1.2.1 and P2.1.2.2 the volumetric expansion coefficients of water and ethanol are determined using a volume dilatometer made of glass. An attached riser tube with a known cross-section is used to measure the change in volume. i.e. the change in volume is determined from the rise height of the liquid. In the experiment P2.1.2.2 the temperature is measured with a temperature sensor and Mobile-CASSY.

THERMAL ANOMALY OF WATER

P2.1.3.1

Investigation of the density maximum of water

P2.1.3.2
Investigation of the density maximum of water

- Measuring with Mobile-CASSY

Investigation of the density maximum of water - Measuring with Mobile-CASSY (P2.1.3.2)

Cat. No.	Description	$\stackrel{\square}{\text { ¢ }}$	
667505	Anomaly of water apparatus	1	1
38235	Thermometer, $-10 \ldots+50^{\circ} \mathrm{C} / 0.1 \mathrm{~K}$	1	
6668451	Magnetic stirrer	1	1
602725	Laboratory dish, 140 mm diam., 900 ml	1	1
665009	Funnel PP 75 mm Ø	1	1
30766	Tubing (rubber)	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1
666555	Universal clamp 0... 80 mm	1	1
30101	Leybold multiclamp	1	1
30002	Stand base, V-shaped, small	1	1
608100	Stand ring with clamp, 70 mm diam.	1	1
524005 W	Mobile-CASSY 2 WiFi		1

[^3]When heated from a starting temperature of $0^{\circ} \mathrm{C}$, water demonstrates an important anomaly: it has a negative volumetric expansion coefficient up to $4^{\circ} \mathrm{C}$, i.e. it contracts when heated. After reaching zero at $4^{\circ} \mathrm{C}$, the volumetric expansion coefficient takes on a positive value. As the density corresponds to the reciprocal of the volume of a quantity of matter, water has a density maximum at $4^{\circ} \mathrm{C}$.
The experiment P2.1.3.1 verifies the density maximum of water by measuring the expansion in a vessel with riser tube. Starting at room temperature, the complete setup is cooled in a constantly stirred water bath to about $1^{\circ} \mathrm{C}$, or alternatively allowed to gradually reach the ambient temperature after cooling in an ice chest or refrigerator. The rise height h is measured as a function of the temperature ϑ. As the change in volume is very slight in relation to the total volume V_{0}, we obtain the density

$$
\rho(\vartheta)=\rho\left(0^{\circ} C\right) \cdot\left(1-\frac{A}{V_{0}} \cdot h(\vartheta)\right)
$$

A: cross-section of riser tube

The experiment P2.1.3.2 verifies the anomaly of water, too. Temperature is measured with a temperature sensor and Mobile-CASSY.

THERMAL CONDUCTIVITY

P2.2.1.1

Determining the thermal conductivity of building materials using the single-plate method

P2.2.1.2

Determining the thermal conductivity of building materials using the heat flux plate principle

P2.2.1.3

Damping temperature fluctuations using multiple-layered walls

Determining the thermal conductivity of building materials using the single-plate method (P2.2.1.1)

Cat. No.	Description		$\begin{aligned} & \underset{\sim}{N} \\ & \dot{N} \\ & \underset{\sim}{n} \end{aligned}$	m 「 \cdots N
38929	Calorimetric chamber	1	1	1
38930	Building materials for calorimetric chamber	1	1	1
726890	DC-High Current Power Supply 1... 32 V/0... 20 A	1	1	1
524013	Sensor-CASSY 2	1	1	1
524220	CASSY Lab 2	1	1	1
5240673	$\mathrm{NiCr}-\mathrm{Ni}$ adapter S, type K	1	2	2
529676	Temperature probe, $\mathrm{NiCr}-\mathrm{Ni}, 1.5 \mathrm{~mm}$, type K	2	3	3
50098	Safety adapter sockets, black, set of 6	1	1	
500624	Safety connecting lead 50 cm , black	2		2
500644	Safety connecting lead, 100 cm , black	4	2	
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$			1
45063	Halogen bulb $12 \mathrm{~V} / 100$ W, G6.35			1
30011	Saddle base			1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1	1

In the equilibrium state, the heat flow through a plate with the cross-section area A and the thickness d depends on the temperature difference $\vartheta_{2}-\vartheta_{1}$ between the front and rear sides and on the thermal conductivity λ of the plate material:

$$
\frac{\Delta Q}{\Delta t}=\lambda \cdot A \cdot \frac{\vartheta_{2}-\vartheta_{1}}{d}
$$

The object of the experiments P2.2.1.1 and P2.2.1.2 is to determine the thermal conductivity of building materials. In these experiments, sheets of building materials are placed in the heating chamber and their front surfaces are heated. The temperatures ϑ_{1} and ϑ_{2} are measured using temperature sensors. The heat flow is determined either from the electrical power of the hot plate or by measuring the temperature using a reference material with known thermal conductivity λ_{0} which is pressed against the sheet of the respective building material from behind.
The experiment P2.2.1.3 demonstrates the damping of temperature variations by means of two-layer walls. The temperature changes between day and night are simulated by repeatedly switching a lamp directed at the outside surface of the wall on and off. This produces a temperature "wave" which penetrates the wall; the wall in turn damps the amplitude of this wave. This experiment measures the temperatures ϑ_{A} on the outer surface, ϑ_{Z} between the two layers and $\vartheta_{\text {I }}$ on the inside as a function of time.

Temperature variations in multi-layer walls (P2.2.1.3)

SOLAR COLLECTOR

P2.2.2.1
Efficiency of a solar collector

Efficiency of a solar collector (P2.2.2.1)

Cat. No.	Description	¢ N N N
38950	Solar collector	1
579220	Water pump, STE 2/50	1
45073	Halogen lamp 1000 W	1
521491	AC/DC power supply $0 . . .12 \mathrm{~V} / 3 \mathrm{~A}$	1
524005 W	Mobile-CASSY 2 WiFi	1
5240673	NiCr-Ni adapter S, type K	1
529676	Temperature probe, $\mathrm{NiCr}-\mathrm{Ni}, 1.5 \mathrm{~mm}$, type K	2
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1
30002	Stand base, V-shaped, small	2
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30043	Stand rod, $75 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30101	Leybold multiclamp	2
666555	Universal clamp 0... 80 mm	1
59006	Plastic beaker	1
604431	Silicone tubing, 5 mm diam., 1 m	1
604432	Silicone tubing, 6 mm diam., 1 m	1
604434	Silicone tubing, 8 mm diam., 1 m	1
665226	Connector, straight, 6/8 mm \emptyset	1
50146	Connecting leads 19 A, 100 cm , red/blue, pair	1

A solar collector absorbs radiant energy to heat the water flowing through it. When the collector is warmer than its surroundings, it loses heat to its surroundings through radiation, convection and heat conductivity. These losses reduce the efficiency

$$
\eta=\frac{\Delta Q}{\Delta E}
$$

i. e. the ratio of the emitted heat quantity ΔQ to the absorbed radiant energy ΔE. In the experiment P2.2.2.1, the heat quantity ΔO emitted per unit of time is determined from the increase in the temperature of the water flowing through the apparatus, and the radiant energy absorbed per unit of time is estimated on the basis of the power of the lamp and its distance from the absorber. The throughput volume of the water and the heat insulation of the solar collector are varied in the course of the experiment.

MIXING TEMPERATURES

P2.3.1.1
Mixing temperature of water
P2.3.1.2
Mixing temperature of water

- Measuring with Mobile-CASSY

Mixing temperature of water - Measuring with Mobile-CASSY (P2.3.1.2)

Cat. No.	Description	「̇ Ṅ N	N $\underset{\sim}{\text { N}}$ N
384161	Cover for Dewar vessel	1	1
38648	Dewar vessel calorimeter, 250 ml	1	1
38234	Thermometer, $-10 \ldots+110^{\circ} \mathrm{C} / 0.2 \mathrm{~K}$	1	
31523	Single-pan suspension balance 610 Tara	1	1
31327	Hand-held stop-watch, 60s/0.2s	1	
666767	Hotplate, 1500 W, 180 mm Ø	1	1
664104	Beaker, DURAN, 400 ml , squat	2	2
524005 W	Mobile-CASSY 2 WiFi		1

When cold water with the temperature ϑ_{1} is mixed with warm or hot water having the temperature ϑ_{2}, an exchange of heat takes place until all the water reaches the same temperature. If no heat is lost to the surroundings, we can formulate the following for the mixing temperature:

$$
\begin{aligned}
& \vartheta_{m}=\frac{m_{1}}{m_{1}+m_{2}} \vartheta_{1}+\frac{m_{2}}{m_{1}+m_{2}} \vartheta_{2} \\
& m_{1}, m_{2}: \text { mass of cold and warm water respectively }
\end{aligned}
$$

Thus the mixing temperature ϑ_{m} is equivalent to a weighted mean value of the two temperatures ϑ_{1} and ϑ_{2}.
The use of the Dewar flask in the experiment P2.3.1.1 essentially prevents the loss of heat to the surroundings. This vessel has a double wall; the intermediate space is evacuated and the interior surface is mirrored. The water is stirred thoroughly to ensure a complete exchange of heat. This experiment measures the mixing temperature ϑ_{m} for different values for $\vartheta_{1}, \vartheta_{2}, m_{1}$ and m_{2}.
In the experiment P2.3.1.2 the different temperatures are measured with a temperature sensor and Mobile-CASSY.

HEAT CAPACITIES

P2.3.2. 1
Determination of specific heat of solids

P2.3.2.2

Determination of specific heat of solids - Measuring with Mobile-CASSY

Determination of specific heat of solids - Measuring with Mobile-CASSY (P2.3.2.2)

Cat. No.	Description	¢	N N N N
384161	Cover for Dewar vessel	1	1
38648	Dewar vessel calorimeter, 250 ml	1	1
38234	Thermometer, $-10 \ldots+110^{\circ} \mathrm{C} / 0.2 \mathrm{~K}$	1	
38434	Heating apparatus	1	1
38435	Copper shot, 200 g	1	1
38436	Glass shot, 100 g	1	1
31576	Lead shot, 200 g	1	1
31523	Single-pan suspension balance 610 Tara	1	1
30328	Steam generator	1	1
664104	Beaker, DURAN, 400 ml , squat	1	1
667194	Silicone tubing $7 \mathrm{~mm} \emptyset, 1 \mathrm{~m}$	1	1
30002	Stand base, V-shaped, small	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1
30101	Leybold multiclamp	1	1
666555	Universal clamp 0... 80 mm	1	1
667614	Heat protective gloves	1	1
524 005W	Mobile-CASSY 2 WiFi		1

When a body is heated or cooled, the absorbed heat capacity ΔQ is proportional to the change in temperature $\Delta \vartheta$ and to the mass m of the body:

$$
\Delta Q=c \cdot m \cdot \Delta \vartheta
$$

The proportionality factor c, the specific heat capacity of the body, is a quantity which depends on the respective material.
To determine the specific heat capacity in experiment P2.3.2.1, various materials in particle form are weighed, heated in steam to the temperature ϑ_{1} and poured into a weighed-out quantity of water with the temperature ϑ_{2}. After careful stirring, heat exchange ensures that the particles and the water have the same temperature ϑ_{m}. The heat quantity released by the particles:

$$
\begin{aligned}
& \Delta Q_{1}=c_{1} \cdot m_{1} \cdot\left(\vartheta_{1} \cdot \vartheta_{m}\right) \\
& m_{1}: \text { mass of particles }
\end{aligned}
$$

c_{1} : specific heat capacity of particles
is equal to the quantity absorbed by the water

$$
\begin{aligned}
& \Delta Q_{2}=c_{2} \cdot m_{2} \cdot\left(\vartheta_{m} \cdot \vartheta_{2}\right) \\
& m_{2}: \text { mass of water }
\end{aligned}
$$

The specific heat capacity of water c_{2} is assumed as a given. The temperature ϑ_{1} corresponds to the temperature of the steam. Therefore, the specific heat quantity c_{1} can be calculated from the measurement quantities $\vartheta_{2}, \vartheta_{m}, m_{1}$ and m_{2}. In the experiment P2.3.2.2 the different temperatures are measured with a temperature sensor and Mobile-CASSY.

CONVERTING MECHANICAL ENERGY INTO HEAT

P2．3．3．1

Converting mechanical energy into heat energy－Recording and evaluating measured values manually

P2．3．3．2
Converting mechanical energy into heat energy－Recording and evaluating with CASSY

Converting mechanical energy into heat energy－Recording and evaluating measured values manually（P2．3．3．1）

Cat．No．	Description	戸゙	N M N゙ Ṅ
38800	Equivalent of heat，basic apparatus	1	1
38801	Water calorimeter	1	1
38802	Copper－block calorimeter	1	1
38803	Aluminium－block calorimeter	1	1
38804	Aluminium－block calorimeter，large	1	1
388051	Thermometer for calorimeters，$+15 \ldots . .35^{\circ} \mathrm{C} / 0.2 \mathrm{~K}$	1	
38824	Weight， 5 kg	1	1
524013	Sensor－CASSY 2		1
524220	CASSY Lab 2		1
524074	Timer S		1
5240673	NiCr－Ni adapter S，type K		1
529676	Temperature probe， $\mathrm{NiCr}-\mathrm{Ni}, 1.5 \mathrm{~mm}$ ，type K		1
33746	Fork－type light barrier		1
50116	Multi－core cable，6－pole， 1.5 m		1
30002	Stand base，V－shaped，small		1
30111	Clamp with jaw clamp		1
30040	Stand rod， $10 \mathrm{~cm}, 12 \mathrm{~mm}$ diam．		1
30041	Stand rod， $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$		1
30107	Simple bench clamp		1
	additionally required： PC with Windows XP／Vista／7／8／10（x86 or $\times 64$ ）		1

Energy is a fundamental quantity of physics．This is because the various forms of energy can be converted from one to another and are thus equivalent to each other，and because the total energy is conserved in the case of conversion in a closed system．
Experiments $P 2.3 .3$ ． 1 and $P 2.3 .3$ ． 2 show the equivalence of mechanical and heat energy．A hand crank is used to turn various calorimeter vessels on their own axes，and friction on a nylon belt causes them to become warmer．The friction force is equivalent to the weight G of a suspended weight．For n turns of the calorimeter，the mechanical work is thus

$$
\begin{aligned}
& W_{n}=G \cdot n \cdot \pi \cdot d \\
& d: \text { diameter of calorimeter }
\end{aligned}
$$

This results in an increase in the temperature of the calorimeter which corres－ ponds to the specific heat capacity

$$
\begin{aligned}
& Q_{n}=m \cdot c \cdot\left(\vartheta_{n}-\vartheta_{0}\right) \\
& c: \text { specific heat capacity, } m: \text { mass, } \\
& \vartheta_{n}: \text { temperature after } n \text { turns }
\end{aligned}
$$

To confirm the relationship

$$
Q_{n}=W_{n}
$$

the two quantities are plotted together in a diagram．
In the experiment P2．3．3．1 the measurement is conducted and evaluated manually point by point．The experiment P2．3．3．2 takes advantage of the computer－ assisted measuring system CASSY．

CONVERTING ELECTRICAL ENERGY INTO HEAT

P2.3.4.1

Converting electrical energy into heat energy - Measuring with a voltmeter and an ammeter

P2.3.4.2

Converting electrical energy into heat energy - Measuring with the joule and wattmeter

P2.3.4.3
Converting electrical energy into heat energy - Measuring with CASSY

P2.3.4.4
Converting electrical energy into heat energy - Measuring with
Mobile-CASSY

Converting electrical energy into heat energy - Measuring with Mobile-CASSY (P2.3.4.4)

Cat. No.	Description	$\begin{aligned} & \overline{+} \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\stackrel{\text { N }}{\text { + }}$		$\stackrel{+}{\dot{+}}$
38420	Lid for 250 ml Dewar vessel with heater	1			
38648	Dewar vessel calorimeter, 250 ml	1			
38234	Thermometer, $-10 . . .110^{\circ} \mathrm{C} / 0.2 \mathrm{~K}$	1			
31327	Hand-held stop-watch, 60s/0.2s	1			
664103	Beaker, DURAN, 250 ml , squat	1			
665755	Measuring cylinder 250 ml , with plastic base	1			
521546	DC Power Supply 0...16 V/0... 5 A	1			
50128	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, black	1			
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	1	1	1	1
38802	Copper-block calorimeter		1	1	1
38803	Aluminium-block calorimeter		1	1	1
38804	Aluminium-block calorimeter, large		1	1	1
388051	Thermometer for calorimeters, $+15 . . .35^{\circ} \mathrm{C} / 0.2 \mathrm{~K}$		1		
38806	Connecting leads, pair		1	1	1
531831	Joule and wattmeter		1		
521491	AC/DC power supply 0...12 V/3 A		1	1	1
524013	Sensor-CASSY 2			1	
524220	CASSY Lab 2			1	
5240673	NiCr-Ni adapter S, type K			1	
529676	Temperature probe, NiCr - Ni , 1.5 mm , type K			1	
524005 W	Mobile-CASSY 2 WiFi				1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)			1	

Just like mechanical energy, electrical energy can also be converted into heat. We can use e.g. a calorimeter vessel with a wire winding to which a voltage is connected to demonstrate this fact. When a current flows through the wire, Joule heat is generated and heats the calorimeter.
The supplied electrical energy

$$
W(t)=U \cdot I \cdot t
$$

is determined in the experiment P2.3.4.1 by measuring the voltage U, the current I and the time t. This results in a change in the temperature of the calorimeter which corresponds to the specific heat capacity

$$
\begin{aligned}
& Q(t)=m \cdot c \cdot(\vartheta(t)-\vartheta(0)) \\
& c: \text { specific heat capacity } \\
& m: \text { mass } \\
& \vartheta(t): \text { temperature at time } t
\end{aligned}
$$

To confirm the equivalence

$$
Q(t)=W(t)
$$

the two quantities are plotted together in a diagram.
The supplied electrical energy is determined in the experiment P2.3.4.2 measured directly using the Joule and Wattmeter.
In the experiment P2.3.4.3, the equivalence of electrical energy E_{el} and thermal energy E_{th} is established experimentally. The supplied electrical energy E_{el} is converted into heat E_{th} in the heating coil (or heating spiral). This leads to a temperature rise in the calorimeter (or water, in which the heating spiral is immersed). As the current / and the temperature ϑ are measured simultaneously as functions of the time t, the constant voltage U being known, the two energy forms can be registered quantitatively in units of wattsecond (Ws) and Joule (J) so that their numerical equivalence can be demonstrated experimentally: $E_{\mathrm{el}}=E_{\mathrm{th}}$.
The supplied electrical energy is determined in the experiment P2.3.4.4 by measuring with the Mobile-CASSY.

LATENT HEAT AND VAPORIZATION HEAT

P2.4.1. 1

Determination of specific vaporization heat of water

P2.4.1.2
Determination of specific latent heat of ice

P2.4.1.3

Determination of specific vaporization heat of water - Measuring with Mobile-CASSY

P2.4.1.4

Determination of specific latent heat of ice - Measuring with Mobile-CASSY

Determination of specific vaporization heat of water - Measuring with Mobile-CASSY (P2.4.1.3)

Cat. No.	Description	$\begin{aligned} & \underset{\sim}{Z} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\dot{\sim}} \\ & \text { N } \end{aligned}$	m + + N	+ - N N
38648	Dewar vessel calorimeter, 250 ml	1	1	1	1
38417	Water separator	1		1	
38234	Thermometer, $-10 \ldots+110^{\circ} \mathrm{C} / 0.2 \mathrm{~K}$	1	1		
31523	Single-pan suspension balance 610 Tara	1	1	1	1
30328	Steam generator	1		1	
667194	Silicone tubing $7 \mathrm{~mm} \emptyset, 1 \mathrm{~m}$	1		1	
664104	Beaker, DURAN, 400 ml , squat	1	1	1	1
30002	Stand base, V-shaped, small	1		1	
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1		1	
30101	Leybold multiclamp	2		2	
666555	Universal clamp 0... 80 mm	2		2	
30325	Immersion heater		1		1
59006	Plastic beaker		1		1
524005 W	Mobile-CASSY 2 WiFi			1	1

When a substance is heated at a constant pressure, its temperature generally increases. When that substance undergoes a phase transition, however, the temperature does not increase even when more heat is added, as the heat is required for the phase transition. As soon as the phase transition is complete, the temperature once more increases with the additional heat supplied. Thus, for example, the specific evaporation heat Q_{V} per unit of mass is required for evaporating water, and the specific melting heat Q_{s} per unit of mass is required for melting ice.
To determine the specific evaporation heat Q_{v} of water, pure steam is fed into the calorimeter in the experiments P2.4.1.1 and P2.4.1.3, in which cold water is heated to the mixing temperature ϑ_{m}. The steam condenses to water and gives off heat in the process; the condensed water is cooled to the mixing temperature. The experiment measures the starting temperature ϑ_{2} and the mass m_{2} of the cold water, the mixing temperature ϑ_{m} and the total mass

$$
m=m_{1}+m_{2}
$$

By comparing the amount of heat given off and absorbed, we can derive the equation

$$
\begin{aligned}
& Q_{v}=\frac{m_{1} \cdot c \cdot\left(\vartheta_{m}-\vartheta_{1}\right)+m_{2} \cdot c \cdot\left(\vartheta_{m}-\vartheta_{2}\right)}{m_{1}} \\
& \vartheta_{1} \approx 100^{\circ} \mathrm{C}, c: \text { specific heat capacity of water }
\end{aligned}
$$

In the experiments P2.4.1.2 and P2.4.1.4, pure ice is filled in a calorimeter, where it cools water to the mixing temperature ϑ_{m} in order to determine the specific melting heat. The ice absorbs the melting heat and melts into water, which warms to the mixing temperature. Analogously to the experiment P2.4.1.1, we can say for the specific melting heat:

$$
\begin{aligned}
& Q_{S}=\frac{m_{1} \cdot c \cdot\left(\vartheta_{m}-\vartheta_{1}\right)+m_{2} \cdot c \cdot\left(\vartheta_{m}-\vartheta_{2}\right)}{m_{1}} \\
& \vartheta_{1}=0^{\circ} \mathrm{C}
\end{aligned}
$$

In the experiments P2.4.1.1 and P2.4.1.2 the temperature is measured with a thermometer. In the experiments P2.4.1.3 and P2.4.1.4 the temperature is measured with the Mobile-CASSY and the corresponding temperature sensor.

MEASURING VAPOR PRESSURE

P2.4.2.1

Recording the vapor-pressure curve of water - Pressures up to 1 bar

P2.4.2.2

Recording the vapor-pressure curve of water - Pressures up to 50 bar

Recording the vapor-pressure curve of water - Pressures up to 50 bar (P2.4.2.2)

The vapour pressure p of a liquid-vapor mixture in a closed system depends on the temperature T. Above the critical temperature, the vapor pressure is undefined. The substance is gaseous and cannot be liquefied no matter how high the pressure is. The increase in the vapor-pressure curve $p(T)$ is determined by several factors, including the molar evaporation heat q_{v} of the substance:

$$
T \cdot \frac{d p}{d T}=\frac{q_{v}}{v_{1}-v_{2}} \text { (Clausius-Clapeyron) }
$$

T : absolute temperature
v_{1} : molar volume of vapor v_{2} : molar volume of liquid
As we can generally ignore v_{2} and q_{v} hardly varies with T_{1}, we can derive a good approximation from the law of ideal gases:

$$
\ln p=\ln p_{0}-\frac{q_{v}}{R \cdot T}
$$

In the experiment P2.4.2.1, the vapor pressure curve of water below the normal boiling point is recorded with the computer-assisted measuring system CASSY. The water is placed in a glass vessel, which was sealed beforehand while the water was boiling at standard pressure. The vapor pressure p is measured as a function of the temperature T when cooling and subsequently heating the system, respectively.
The high-pressure steam apparatus is used in the experiment P2.4.2.2 for measuring pressures of up to 50 bar. The vapor pressure can be read directly from the manometer of this device. A thermometer supplies the corresponding temperature. The measured values are recorded and evaluated manually point by point.

Recording the vapor-pressure curve of water - Pressures up to 1 bar (P2.4.2.1)

HEAT

PHASE TRANSITIONS

CRITICAL TEMPERATURE

P2.4.3.1

Observing a mixture of liquid and gas at the critical point

P2.4.3.2

Observing a mixture of liquid and gas at the critical point - Measuring with Mobile-CASSY

Observing a mixture of liquid and gas at the critical point - Measuring with Mobile-CASSY (P2.4.3.2)

Cat. No.	Description	$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{⿺} \\ & \underset{\sim}{2} \end{aligned}$	N + ̇̇
371401	Pressure chamber for demonstrating the critical temperature	1	1
45060	Lamp housing with cable	1	1
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}, \mathrm{E14}$, set of 2	1	1
46020	Condenser with diaphragm holder	1	1
521210	Transformer 6/12 V	1	1
46003	Lens in frame, $f=100 \mathrm{~mm}$	1	1
460310	Optical bench, S 1 profile, 1 m	1	1
460311	Clamp rider with clamp 45/65	2	2
460312	Clamp rider with clamp 45/35	1	1
38221	Stiring thermometer $-10 . .+110^{\circ} \mathrm{C}$	1	
30328	Steam generator	1	
667194	Silicone tubing 7 mm Ø, 1 m	2	2
664104	Beaker, DURAN, 400 ml , squat	1	
524005 W	Mobile-CASSY 2 Wifi		1
6667681	Circulation thermostat SC 100-S5P		1
6753410	Water, pure, 51		2

The critical point of a real gas is defined by the critical pressure $p_{c,}$ the critical density ρ_{c} and the critical temperature T_{c}. Below the critical temperature, the substance is gaseous for a sufficiently great molar volume - it is termed a vapor - and is liquid at a sufficiently small molar volume. Between these extremes, a liquid-vapor mix exists, in which the vapor component increases with the molar volume. As liquid and vapor have different densities, they are separated in a gravitational field. As the temperature rises, the density of the liquid decreases and that of the vapor increases, until finally at the critical temperature both densities have the value of the critical density. Liquid and vapor mix completely, and the phase boundary disappears. Above the critical temperature, the substance is gaseous, regardless of the molar volume.
Experiments P2.4.3.1 and P2.4.3.2 investigate the behavior of sulfur hexafluoride $\left(\mathrm{SF}_{6}\right)$ close to the critical temperature. The critical temperature of this substance is $\mathrm{T}_{\mathrm{C}}=318.7 \mathrm{~K}$ and the critical pressure is $p_{\mathrm{c}}=37.6$ bar. The substance is enclosed in a pressure chamber designed so that hot water or steam can flow through the mantle. The dissolution of the phase boundary between liquid and gas while heating the substance, and its restoration during cooling, are observed in projection on the wall. As the system approaches the critical point, the substance scatters short-wave light particularly intensively; the entire contents of the pressure chamber appears red-brown. This critical opalescence is due to the variations in density, which increase significantly as the system approaches the critical point.
Note: The dissolution of the phase boundary during heating can be observed best when the pressure chamber is heated as slowly as possible.
The experiment is feasible with the steam generator and the measurement can be done with a thermometer. Or it is possible to use a circulation thermostat and the Mobile-CASSY with the temperature sensor.

GAS LAWS

P2.5.2. 1

Pressure-dependency of the volume of a gas at a constant temperature (Boyle-Mariotte's law)

P2.5.2.2

Temperature-dependency of the volume of a gas at a constant pressure (Gay-Lussac's law)

P2.5.2.3

Temperature-dependency of the pressure of a gas at a constant volume (Amontons' law)

Pressure-dependency of the volume of a gas at a constant temperature (Boyle-Mariotte's law) (P2.5.2.1)

Cat. No.	Description	-	N	N
38200	Gas thermometer	1	1	1
37558	Hand vacuum pump	1	1	1
524005 W	Mobile-CASSY 2 WiFi	1	1	1
524064	Pressure sensor S, $\pm 2000 \mathrm{hPa}$	1		1
665 223ET10	Connector, T-shaped, $8 \mathrm{~mm} \emptyset, 10$ pieces	1		1
30002	Stand base, V-shaped, small	1	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1	1
30111	Clamp with jaw clamp	2	2	2
666767	Hotplate, $1500 \mathrm{~W}, 180 \mathrm{~mm}$ ø		1	1
664103	Beaker, DURAN, 250 ml , squat		1	1

The gas thermometer consists of a glass tube closed at the bottom end, in which a mercury stopper seals the captured air at the top. The volume of the air column is determined from its height and the cross-section of the glass tube. When the pressure at the open end is altered using a hand pump, this changes the pressure on the sealed side correspondingly. The temperature of the entire gas thermometer can be varied using a water bath.
In the experiment P2.5.2.1, the air column is maintained at a constant room temperature T. At an external pressure p_{0}, it has a volume of V_{0} bounded by the mercury stopper. The pressure p in the air column is reduced by evacuating air at the open end, and the increased volume V of the air column is determined for different pressure values p. The evaluation confirms the relationship

$$
p \cdot V=p_{0} \cdot V_{0} \text { for } T=\text { const. (Boyle-Mariotte's law) }
$$

In the experiment P2.5.2.2, the gas thermometer is placed in a water bath of a specific temperature which is allowed to gradually cool. The open end is subject to the ambient air pressure, so that the pressure in the air column is constant. This experiment measures the volume V of the air column as a function of the temperature T of the water bath. The evaluation confirms the relationship

$$
V \propto T \text { for } p=\text { const. (Gay-Lussac's law) }
$$

In the experiment $P 2.5 .2 .3$, the pressure p in the air column is constantly reduced by evacuating the air at the open end so that the volume V of the air column also remains constant as the temperature drops. This experiment measures the pressure p of the air column as a function of the temperature T of the water bath. The evaluation confirms the relationship

$$
p \propto T \text { for } V=\text { const. (Amontons' law) }
$$

[^4]
SPECIFIC HEAT OF GASES

P2.5.3.1

Determining the adiabatic exponent $\mathrm{c}_{\mathrm{p}} / \mathrm{c}_{V}$ of air according to Rüchardt

P2.5.3.2

Determining the adiabatic exponent c_{p} / c_{v} of various gases using the gas elastic resonance apparatus

Determining the adiabatic exponent $\mathrm{c}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}$ of air according to Rüchardt (P2.5.3.1)

Cat. No.	Description	¢	N Ṅ N N
371051	Oscillation tube with Mariotte's bottle	1	
31327	Hand-held stop-watch, 60s/0.2s	1	
31720	Precision aneroid barometer	1	
59006	Plastic beaker	1	
6753120	Vaseline, 100 g	1	
37107	Gas elastic resonance apparatus		1
531120	Multimeter LDanalog 20		1
522561	Function generator P		1
30002	Stand base, V-shaped, small		1
660980	Fine regulating valve for minican gas canisters		1
660985	Minican pressurised gas canister, neon		1
660999	Minican pressurised gas canister, carbon dioxide		1
665255	Three-way valve, T-shaped, ST nozzles		1
667194	Silicone tubing $7 \mathrm{~mm} \emptyset, 1 \mathrm{~m}$		1
604481	Rubber tubing, $1 \mathrm{~m} \times 4 \mathrm{~mm}$ diam., DIN 12865		1
604510	Tubing connector, $4 \ldots 15 \mathrm{~mm}$		1
500422	Connecting lead 19 A, 50 cm , blue		1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair		1

Determining the adiabatic exponent c_{p} / c_{v} of various gases using the gas elastic resonance apparatus (P2.5.3.2)

In the case of adiabatic changes in state, the pressure p and the volume V of a gas demonstrate the relationship

$$
p \cdot V^{\mathrm{k}}=\text { const. }
$$

whereby the adiabatic exponent is definid as

$$
\kappa=\frac{c_{p}}{c_{v}}
$$

i.e. the ratio of the specific heat capacities c_{p} and c_{V} of the respective gas.

The experiment P2.5.3.1 determines the adiabatic exponent of air from the oscillation period of a ball which caps and seals a gas volume in a glass tube, whereby the oscillation of the ball around the equilibrium position causes adiabatic changes in the state of the gas. In the equilibrium position, the force of gravity and the opposing force resulting from the pressure of the enclosed gas are equal. A deflection from the equilibrium position by Δx causes the pressure to change by

$$
\Delta p=-\kappa \cdot p \cdot \frac{A \cdot \Delta x}{V}
$$

A : cross-section of riser tube

which returns the ball to the equilibrium position. The ball thus oscillates with the frequency

$$
f_{0}=\frac{1}{2 \pi} \cdot \sqrt{\frac{\kappa \cdot p \cdot A^{2}}{m \cdot V}}
$$

around its equilibrium position.
In the experiment P2.5.3.2, the adiabatic exponent is determined using the gas elastic resonance apparatus. Here, the air column is sealed by a magnetic piston which is excited to forced oscillations by means of an alternating electromagnetic field. The aim of the experiment is to find the characteristic frequency f_{0} of the system, i.e. the frequency at which the piston oscillates with maximum amplitude. Other gases, such as carbon dioxide and nitrogen, can alternatively be used in this experiment.

REAL GASES

P2.5.4.1
Joule-Thomson effect

Joule-Thomson effect (P2.5.4.1)

Cat. No.	Description	\square $\dot{+}$ ® N
37156	Joule-Thomson apparatus	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
524045	Temperature box, NiCr-Ni/NTC	1
666216	Temperature probe, $\mathrm{NiCr-Ni}$,	2
524064	Pressure sensor S, $\pm 2000 \mathrm{hPa}$	1
667186	Vacuum rubber tubing, 8 mm diam.	1
667184	Tubing clamps 10... 16 mm , set of 10	1
661017	Pressure reducing valve for carbon dioxide, helium, argon	1
661018	Pressure reducing valve for nitrogen	1
664569	Open jaw spanner for gas canisters	1
6610082	Carbon dioxide, compressed gas bottle, 21	1
6610083	Nitrogen, compressed gas bottle, 21	1
661021	Table rack for one compressed gas bottle 21	1
30001	Stand base, V-shaped, large	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30101	Leybold multiclamp	1
666555	Universal clamp 0... 80 mm	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

The Joule-Thomson effect occurs when a real gas or gas mixture undergoes a change in temperature by reduction of the pressure p. The strength and direction of the change in temperature is described by the Joule-Thomson coefficient μ :

$$
\begin{aligned}
& \mu_{J T}=\left(\frac{\partial T}{\partial p}\right)_{H} \\
& H: \text { enthalpy = const. }
\end{aligned}
$$

In the experiment P2.5.4.1 the flowing gas is throttled through a membrane and expanded behind it. The volume occupied by the gas can increase behind the obstacle, so the average particle distance is increased. This causes a change in the temperature of the gas. The pressure and the temperature difference before and after the membrane is measured in this experiment.

Temperature change against pressure (P2.5.4.1)

HOT-AIR ENGINE: QUALITATIVE EXPERIMENTS

P2.6.1.5

Operating the hot-air engine P as a thermal engine, heat pump and a refrigerator

Operating the hot-air engine P as a thermal engine ($P 2.6 .1 .5$)

Cat. No.	Description	? \vdots
388176	Hot-air engine P	1
30322	Alcohol burner, metal	1
521231	Low-voltage power supply $3 / 6 / 9 / 12 \mathrm{~V}$	1
524005 W	Mobile-CASSY 2 WiFi	1
5240673	NiCr-Ni adapter S, type K	1
6661261	Temperature probe, NiCr-Ni, fast, type K	1
30011	Saddle base	1
30101	Leybold multiclamp	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm}$ Ø	1
59013	Stand rod with bore holes	1
34089	Coupling plug 4 mm	2
501861	Crocodile-clips, polished, set of 6	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1

Operating the hot-air engine P as a heat pump and a refrigerator ($P 2.6 .1 .5$)

The hot-air engine (invented by R. Stirling, 1816) is the oldest thermal engine, along with the steam engine. In greatly simplified terms, its thermodynamic cycle consists of an isothermic compression at low temperature, an isochoric application of heat, an isothermic expansion at high temperature and an isochoric emission of heat. The displacement piston and the working piston are connected to a crankshaft via tie rods, whereby the displacement piston leads the working piston by 90°. When the working piston is at top dead center (a), the displacement piston is moving downwards, displacing the air into the electrically heated zone of the cylinder. Here, the air is heated, expands and forces the working piston downward (b). The mechanical work is transferred to the flywheel. When the working piston is at bottom dead center (c), the displacement piston is moving upwards, displacing the air into the water-cooled zone of the cylinder. The air cools and is compressed by the working cylinder (d). The flywheel delivers the mechanical work required to execute this process.
Depending on the direction of rotation of the crankshaft, the hot-air engine operates as either a heat pump or a refrigerating machine when its flywheel is externally driven. When the displacement piston is moving upwards while the working piston is at bottom dead center, it displaces the air in the top part of the cylinder. The air is then compressed by the working piston and transfers its heat to the cylinder head, i.e. the hot-air motor operates as a heat pump. When run in the opposite direction, the working piston causes the air to expand when it is in the top part of the cylinder, so that the air draws heat from the cylinder head; in this case the hot-air engine operates as a refrigerating machine.
The experiment P2.6.1.5 qualitatively investigates the operation of the hot-air engine P as a thermal engine. The hot-air engine P is a transparent model to show the basics of energy transformation. The hot-air engine P is driven by an alcohol burner and transforms via a small generator the mechanical energy into a voltage which can be measured. In addition, the operation of the hot-air engine P as a heat pump and a refrigerating machine is shown. By variing the speed of the electric motor, i.e. the mechanical power supplied to the hot-air engine P, the impact on heating or refrigerating power is observed.

HOT-AIR ENGINE: QUANTITATIVE EXPERIMENTS

P2.6.2.1

Frictional losses in the hot-air engine (calorific determination)

P2.6.2.2

Determining the efficiency of the hot-air engine as a heat engine

P2.6.2.3

Determining the efficiency of the hot-air engine as a refrigerator

Frictional losses in the hot-air engine (calorific determination) (P2.6.2.1)

Cat. No.	Description	$\begin{aligned} & \overline{\mathrm{N}} \\ & \dot{\oplus} \\ & \dot{\mathrm{I}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \dot{O} \\ & \underset{\mathrm{i}}{2} \end{aligned}$	
388182	Hot-air engine	1	1	1
388221	Accessories for hot air engine for power measurement	1	1	1
34738	Experiment motor 93 W	1		1
521547	DC Power Supply 0... $30 \mathrm{~V} / 0 . . .5 \mathrm{~A}$	1		1
575471	Counter S	1	1	1
33746	Fork-type light barrier	1	1	1
50116	Multi-core cable, 6-pole, 1.5 m	1	1	1
31327	Hand-held stop-watch, $60 \mathrm{~s} / 0.2 \mathrm{~s}$	1	1	1
38235	Thermometer, $-10 \ldots+50^{\circ} \mathrm{C} / 0.1 \mathrm{~K}$	1	1	1
30002	Stand base, V-shaped, small	1	2	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1	1	1
59006	Plastic beaker	1	1	1
500641	Safety connecting lead, 100 cm , red	1		1
500642	Safety connecting lead, 100 cm , blue	1		1
388181	Immersion pump	1^{*}	1^{*}	1^{*}
521231	Low-voltage power supply 3/6/9/12 V	1^{*}	1^{*}	1^{*}
667194	Silicone tubing $7 \mathrm{~mm} \emptyset, 1 \mathrm{~m}$	2*	2*	2^{*}
6043131	Wide-mouthed can, 101	1^{*}	1^{*}	1^{*}
56211	U-core with yoke		1	
562121	Clamping device with spring clip		1	
56221	Mains coil, 500 turns		1	
56218	Coil, 50 turns, extra-low voltage		1	
531120	Multimeter LDanalog 20		1	
531130	Multimeter LDanalog 30		1	
314141	Precision dynamometer, 1 N		1	
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		1	
30051	Stand rod, right-angled		1	
30101	Leybold multiclamp		2	
34263	Weight 50 g		3	
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair		1	

Cat. No.	Description			m ¢ ¢ ì
50133	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, black		3	2
521546	DC Power Supply 0...16 V/0... 5 A			1

* additionally recommended

When the hot-air engine is operated as a heat engine, each engine cycle withdraws the amount of heat Q_{1} from reservoir 1, generates the mechanical work W and transfers the difference $Q_{2}=Q_{1}-W$ to reservoir 2. The hot-air engine can also be made to function as a refrigerating machine while operated in the same rotational direction by externally applying the mechanical work W. In both cases, the work W_{F} converted into heat in each cycle through the friction of the piston in the cylinder must be taken into consideration.
Thermodynamic cycles are often described as a closed curve in a $p V$ diagram (p : pressure, V : volume). The work added to or withdrawn from the system (depending on the direction of rotation) corresponds to the area enclosed by the curve.
In order to determine the work of friction W_{F} in the experiment P2.6.2.1, the temperature increase ΔT_{F} in the cooling water is measured while the hot-air engine is driven using an electric motor and the cylinder head is open.
The experiment P2.6.2.2 determines the efficiency

$$
\eta=\frac{W}{W+Q_{2}}
$$

of the hot-air engine as a heat engine. The mechanical work W exerted on the axle in each cycle can be calculated using the external torque N of a dynamometrical brake which brakes the hot-air engine to a speed f. The amount of heat Q_{2} given off corresponds to a temperature increase ΔT in the cooling water.
The experiment P2.6.2.3 determines the efficiency

$$
\eta=\frac{Q_{2}}{Q_{1}-Q_{2}}
$$

of the hot-air engine as a refrigerating machine. Here, the hot-air engine with closed cylinder head is driven using an electric motor and Q_{1} is determined as the electrical heating energy required to maintain the cylinder head at the ambient temperature.

HOT-AIR ENGINE: QUANTITATIVE EXPERIMENTS

P2.6.2.4
pV diagram of the hot-air engine as a heat engine - Recording and evaluating with CASSY

pV diagram of the hot-air engine as a heat engine - Recording and evaluating with CASSY (P2.6.2.4)

Cat. No.	Description	+ \sim 0 0 N
388182	Hot-air engine	1
56211	U-core with yoke	1
562121	Clamping device with spring clip	1
56221	Mains coil, 500 turns	1
56218	Coil, 50 turns, extra-low voltage	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
524082	Rotary motion sensor S	1
524064	Pressure sensor S, $\pm 2000 \mathrm{hPa}$	1
30948	Fishing line	1
35208	Helical spring $25 \mathrm{~N} / \mathrm{m}$	1
50133	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, black	2
388181	Immersion pump	1^{*}
521231	Low-voltage power supply 3/6/9/12 V	1^{*}
667194	Silicone tubing $7 \mathrm{~mm} \emptyset, 1 \mathrm{~m}$	2*
6043131	Wide-mouthed can, 101	1^{*}
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

* additionally recommended

When the hot-air engine is operated as a heat engine, each engine cycle withdraws the amount of heat Q_{1} from reservoir 1 , generates the mechanical work W and transfers the difference $Q_{2}=Q_{1}-W$ to reservoir 2. The hot-air engine can also be made to function as a refrigerating machine while operated in the same rotational direction by externally applying the mechanical work W . In both cases, the work W_{F} converted into heat in each cycle through the friction of the piston in the cylinder must be taken into consideration.
Thermodynamic cycles are often described as a closed curve in a $p V$ diagram (p : pressure, V : volume). The work added to or withdrawn from the system (depending on the direction of rotation) corresponds to the area enclosed by the curve.
In the experiment P2.6.2.4, the $p V$ diagram of the hot air engine as a heat engine is recorded using the computer-assisted measured value recording system CASSY. The pressure sensor measures the pressure p in the cylinder and a rotary motion sensor measures the position s, from which the volume is calculated, as a function of the time t. The measured values are displayed on the screen directly in a pV diagram. In the further evaluation, the mechanical work performed as piston friction per cycle

$$
W=-\int p \cdot d V
$$

and from this the mechanical power

$$
P=W \cdot f
$$

f : no-load speed

are calculated and plotted in a graph as a function of the no-load speed

pV diagram of the hot air engine (P2.6.2.4)

HEAT PUMP

P2.6.3. 1

Determining the efficiency of the heat pump as a function of the temperature differential

P2.6.3.2
Investigating the function of the expansion valve of the heat pump

P2.6.3.3

Analyzing the cyclical process of the heat pump with the Mollier diagram

Determining the efficiency of the heat pump as a function of the temperature differential (P2.6.3.1)

Cat. No.	Description	\bar{m} ¢ ì ì		m N ì ì
389521	Heat pump	1	1	1
531831	Joule and wattmeter	1		1
524005 W	Mobile-CASSY 2 WiFi	1	1	1
5240673	NiCr-Ni adapter S, type K	1	1	1
529676	Temperature probe, NiCr-Ni, 1.5 mm , type K	2	2	3
31312	Digital stop-watch	1	1	1

Heat pump (389521) with schematic diagram of all functional components (P2.6.3.1)

The heat pump extracts heat from a reservoir with the temperature T_{1} through vaporization of a coolant and transfers heat to a reservoir with the temperature T_{2} through condensation of the coolant. In the process, compression in the compressor $(a-b)$ greatly heats the gaseous coolant. It condenses in the liquefier ($\mathrm{c}-\mathrm{d}$) and gives up the released condensation heat ΔQ_{2} to the reservoir T_{2}. The liquefied coolant is filtered and fed to the expansion valve (e-f) free of bubbles. This regulates the supply of coolant to the vaporizer ($\mathrm{g}-\mathrm{h}$). In the vaporizer, the coolant once again becomes a gas, withdrawing the necessary evaporation heat ΔQ_{1} from the reservoir T_{1}.
The aim of the experiment P2.6.3.1 is to determine the efficiency

$$
\varepsilon=\frac{\Delta Q_{2}}{\Delta W}
$$

of the heat pump as a function of the temperature differential $\Delta T=T_{2}-T_{1}$. The heat quantity ΔQ_{2} released is determined from the heating of water reservoir T_{2}, while the applied electrical energy ΔW is measured using the joule and wattmeter.
In the experiment P2.6.3.2, the temperatures T_{f} and T_{h} are recorded at the outputs of the expansion valve and the vaporizer. If the difference between these two temperatures falls below a specific limit value, the expansion valve chokes off the supply of coolant to the vaporizer. This ensures that the coolant in the vaporizer is always vaporized completely.
In the experiment P2.6.3.3, a Mollier diagram, in which the pressure p is graphed as a function of the specific enthalpy h of the coolant, is used to trace the energy transformations of the heat pump. The pressures p_{1} and p_{2} in the vaporizer and liquefier, as well as the temperatures $T_{\mathrm{a}}, T_{\mathrm{b}}, T_{\mathrm{e}}$ and T_{f} of the coolant are used to determine the corresponding enthalpy values $h_{\mathrm{a}}, h_{\mathrm{b}}, h_{\mathrm{e}}$ and h_{f}. This experiment also measures the heat quantities $\Delta \mathrm{Q}_{2}$ and $\Delta \mathrm{Q}_{1}$ released and absorbed per unit of time. This in turn is used to determine the amount of coolant Δm circulated per unit of time.

P3.4.3.2

Measuring the induction voltage in a conductor loop for a variable magnetic field - with Power-CASSY as variable source of current.

P3 ELECTRICITY

P3.1 ELECTROSTATICS 81
P3.2 FUNDAMENTALS OF ELECTRICITY 93
P3.3 MAGNETOSTATICS 98
P3.4 ELECTROMAGNETIC INDUCTION 103
P3.5 ELECTRICAL MACHINES 109
P3.6 DC AND AC CIRCUITS 112
P3.7 ELECTROMAGNETIC OSCILLATIONS AND WAVES 118
P3.8 FREE CHARGE CARRIERS IN A VACUUM 124
P3.9 ELECTRICAL CONDUCTION IN GASES 127

P3 ELECTRICITY

P3.1 ELECTROSTATICS

P3.1.1 Basic experiments on electrostatics 81
P3.1.2 Coulomb's law 82-83
P3.1.3 Field lines and equipotential lines 84-85
P3.1.4 Effects of force in an electric field 86-87
P3.1.5 Charge distributions on electrical conductors 88
P3.1.6 Definition of capacitance 89
P3.1.7 Plate capacitor 90-92
P3.2 FUNDAMENTALS OF ELECTRICITY
P3.2.2 Ohm's law 93
P3.2.3 Kirchhoff's laws 94-95
P3.2.4 Circuits with electrical measuring instruments 96
P3.2.5 Conducting electricity by means of electrolysis 97

P3.3 MAGNETOSTATICS

P3.3.1 Basic experiments on magnetostatics 98
P3.3.3 Effects of force in a magnetic field 99-100
P3.3.4 Biot-Savart's law 101-102

P3.4 ELECTROMAGNETIC INDUCTION

P3.4.1 Voltage impulse 103
P3.4.2 Induction in a moving conductor loop 104
P3.4.3 Induction by means of a variable magnetic field 105
P3.4.5 Transformer 106-107
P3.4.6 Measuring the earth's magnetic field 108

P3.5 ELECTRICAL MACHINES

P3.5.2 Electric generators 109
P3.5.3 Electric motors 110
P3.5.4 Three-phase machines 111
P3.6 DC AND AC CIRCUITS
P3.6.1 Circuit with capacitor 112
P3.6.2 Circuit with coil 113
P3.6.3 Impedances 114
P3.6.4 Measuring-bridge circuits 115
P3.6.6 Electrical work and power 116-117
P3.7 ELECTROMAGNETIC OSCILLATIONS AND WAVES
P3.7.1 Electromagnetic oscillator circuit 118
P3.7.2 Decimeter-range waves 119
P3.7.3 Propagation of decimeter-range waves along lines 120
P3.7.4 Microwaves 121
P3.7.5 Propagation of microwaves along lines 122
P3.7.6 Directional characteristic of dipole radiation 123
P3.8 FREE CHARGE CARRIERS IN A VACUUM
P3.8.3 Maltese-cross tube 124
P3.8.4 Perrin tube 125
P3.8.5 Thomson tube 126
P3.9 ELECTRICAL CONDUCTION IN GASES
P3.9.2 Gas discharge at reduced pressure127

BASIC EXPERIMENTS ON ELECTROSTATICS

P3.1.1.2

Basic electrostatics experiments with the electrometer amplifier

Basic electrostatics experiments with the electrometer amplifier (P3.1.1.2)

Cat. No.	Description	$\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{\text { ¢ }}}$
53214	Electrometer amplifier	1
562791	Plug-in power supply, 12 V AC	1
57825	Capacitor, 1 nF, STE 2/19	1
57810	Capacitor, 10 nF, STE 2/19	1
53216	Connecting rod	1
531120	Multimeter LDanalog 20	1
54100	Friction rods, PVC and acrylic	1
54122	Leather cloth	1
68663	Polyethylene friction foils, set of 10	1
54612	Faraday's cup	1
590011	Clamping plug	1
54251	Induction plate $8 \mathrm{~cm} \times 4 \mathrm{~cm}$	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1
500424	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, black	1
666711	Butane gas burner	1^{*}
666712 ET3	Butane cartridge, 190 g , set of 3	1^{*}

* additionally recommended

[^5]
ELECTRICITY

ELECTROSTATICS

COULOMB'S LAW

P3.1.2.2
Confirming Coulomb's law

- Measuring with the force sensor

Confirming Coulomb's law - Measuring with the force sensor (P3.1.2.2)

Cat. No.	Description	N Ṅ ®̇
314263	Bodies for electric charge, set	1
33700	Trolley	1
46082	Precision metal rail, 50 cm	1
46095	Clamp rider	2
524005 W	Mobile-CASSY 2 WiFi	1
524060	Force sensor S, $\pm 1 \mathrm{~N}$	1
521721	High-voltage power supply, 25 kV	1
501051	Cable for high voltages, 1.5 m	1
59013	Stand rod with bore holes	1
30011	Saddle base	1
59002	Small clip plug	1
53214	Electrometer amplifier	1
562791	Plug-in power supply, 12 V AC	1
57825	Capacitor, 1 nF, STE 2/19	1
57810	Capacitor, 10 nF, STE 2/19	1
54612	Faraday's cup	1
590011	Clamping plug	1
53216	Connecting rod	1
30002	Stand base, V-shaped, small	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1
30101	Leybold multiclamp	1
50145	Connecting lead 19 A, 50 cm , red/blue, pair	1
500424	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, black	1
50142	Connecting lead $32 \mathrm{~A}, 100 \mathrm{~cm}$, yellow/green	1
500610	Safety connecting lead, 25 cm , yellow/green	1
500640	Safety connecting lead, 100 cm , yellow/green	1

According to Coulomb's law, the force acting between two point-shaped electrical charges Q_{1} and Q_{2} at a distance r from each other can be determined using the formula

$$
\begin{aligned}
& F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q_{1} \cdot Q_{2}}{r^{2}} \\
& \text { where } \varepsilon_{0}=8.85 \cdot 10^{-12} \frac{\mathrm{As}}{\mathrm{Vm}} \text { (permittivity) }
\end{aligned}
$$

This force acts between two charged spheres when the distance r between the sphere midpoints is significantly greater than the sphere diameter, so that the uniform charge distribution on the spheres is undisturbed. In other words, the spheres in this geometry may be treated as points.
The coulomb force between two charged spheres can be determined using a sensitive force sensor. This device consists of two bending elements connected in parallel with four strain gauges in a bridge configuration; their electrical resistance changes when a load is applied. The change in resistance is proportional to the force acting on the instrument.
In the experiment P3.1.2.2, the force sensor is connected to a measuring instrument, which displays the measured force directly. No calibration is necessary. The coulomb force is measured as a function of the distance r between the sphere midpoints, the charge Q_{1} of the first sphere and the charge Q_{2} of the second sphere. The charges of the spheres are measured using an electrometer amplifier connected as a coulomb meter. The aim of the evaluation is to verify the proportionalities

$$
F \propto \frac{1}{r^{2}}, \quad F \propto Q_{1} \text { and } F \propto Q_{2}
$$

and to calculate the permittivity ε_{0}.

COULOMB'S LAW

P3.1.2.3

Confirming Coulomb's law

- Recording and evaluating with CASSY

Confirming Coulomb's law - Recording and evaluating with CASSY (P3.1.2.3)

Cat. No.	Description	
314263	Bodies for electric charge, set	1
33700	Trolley	1
46082	Precision metal rail, 50 cm	1
46095	Clamp rider	2
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
524060	Force sensor S, $\pm 1 \mathrm{~N}$	1
524082	Rotary motion sensor S	1
521721	High-voltage power supply, 25 kV	1
501051	Cable for high voltages, 1.5 m	1
59013	Stand rod with bore holes	1
30011	Saddle base	1
59002	Small clip plug	1
53214	Electrometer amplifier	1
562791	Plug-in power supply, 12 V AC	1
57825	Capacitor, 1 nF, STE 2/19	1
57810	Capacitor, 10 nF, STE 2/19	1
531120	Multimeter LDanalog 20	1
54612	Faraday's cup	1
590011	Clamping plug	1
53216	Connecting rod	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1
30002	Stand base, V-shaped, small	1
30101	Leybold multiclamp	1
33704	Driving weights, set	1
30107	Simple bench clamp	1
30948	Fishing line	1
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	1
500424	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, black	1
50143	Connecting lead $32 \mathrm{~A}, 200 \mathrm{~cm}$, yellow/green	1

Cat. No.	Description	
500610	Safety connecting lead, 25 cm , yellow/green	1
500640	Safety connecting lead, 100 cm , yellow/green	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

For computer-assisted measuring of the coulomb force between two charged spheres, we can also connect the force sensor to the CASSY interface. A displacement sensor (Rotary motion sensor S) is additionally required to measure the distance between the charged spheres.
The experiment P3.1.2.3 utilizes the software CASSY Lab to record the values and evaluate them. The coulomb force is measured for different charges Q_{1} and Q_{2} as a function of the distance r. The charges of the spheres are measured using an electrometer amplifier connected as a coulomb meter. The aim of the evaluation is to verify the proportionality

$$
F \propto \frac{1}{r^{2}}
$$

and to calculate of the permittivity ε_{0}.

ELECTRICITY

ELECTROSTATICS

FIELD LINES AND EQUIPOTENTIAL LINES

P3.1.3.1

Displaying lines of electric flux

P3.1.3.2

Displaying the equipotential lines of electric fields

Displaying the equipotential lines of electric fields (P3.1.3.2)

Cat. No.	Description	¢	
54106	Electric field lines equipment set	1	
501051	Cable for high voltages, 1.5 m	2	
52170	High-voltage power supply, 10 kV	1	
MIK 74708	BMS SyncCam 8Mp	1^{*}	
54509	Electrolytic tank		1
501861	Crocodile-clips, polished, set of 6		1
521231	Low-voltage power supply 3/6/9/12 V		1
531120	Multimeter LDanalog 20		1
68666	Steel needle		1
590011	Clamping plug		1
59013	Stand rod with bore holes		1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm}$ Ø		1
30101	Leybold multiclamp		1
30011	Saddle base		1
501461	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, black, pair		2
	additionally required: PC or device for image display	1	

Measurement example: equipotential lines around a needle tip (P3.1.3.2)

The mutual force effect between electric charges can be described by an electric field. The electric field is also present even when it cannot be demonstrated through a force acting on a sample charge. A field is best described in terms of lines of electric flux, which follow the direction of electric field strength. The orientation of these lines of electric flux is determined by the spatial arrangement of the charges generating the field.
In a two-dimensional cross-section of an electric field, points of equal potential form a line. The direction of these isoelectric lines, just like the lines of electric flux, are determined by the spatial arrangement of the charges generating the field.
In the experiment P3.1.3.1, small particles in an oil-filled cuvette are used to illustrate the lines of electric flux. The particles align themselves in the electric field to form chains which run along the lines of electric flux. Four different pairs of electrodes are provided to enable electric fields with different spatial distributions to be generated; these electrode pairs are mounted beneath the cuvette, and connected to a high voltage source of up to 10 kV . The resulting patterns can be interpreted as the cross-sections of two spheres, one sphere in front of a plate, a plate capacitor and a spherical capacitor.
The experiment P3.1.3.2 measures the isoelectric lines for bodies with different charges. To do this, a voltage is applied to a pair of electrodes placed in an electrolytic tray filled with distilled water. An AC voltage is used to avoid potential shifts due to electrolysis at the electrodes. A voltmeter measures the potential difference between the 0 V electrode and a steel needle immersed in the water. To display the isoelectric lines, the points of equal potential difference are localized and drawn on graph paper. In this way, it is possible to observe and study two-dimensional sections through the electric field in a plate capacitor, a Faraday's cup, a dipole, an image charge and a slight curve.

P3.1.3.3

Measuring the potential inside a plate capacitor

P3.1.3.4
Measuring the potential around a charged sphere

Measuring the potential around a charged sphere (P3.1.3.4)

Cat. No.	Description	m 戸̈ ल゙	
524080	Electric field meter S	1	1
540540	Accessories for electric field meter S	1	1
524005 W	Mobile-CASSY 2 WiFi	1	1
31102	Metal rule, 1 m	1	1
52170	High-voltage power supply, 10 kV	1	1
460317	Optical bench, S1 profile, 0.5 m	1	
460312	Clamp rider with clamp 45/35	2	
30011	Saddle base	2	3
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	2	
30101	Leybold multiclamp	1	
500600	Safety connection lead, 10 cm , yellow/green	1	1
500621	Safety connecting lead 50 cm , red	1	
500622	Safety connecting lead 50 cm , blue	1	1
500641	Safety connecting lead, 100 cm , red	1	1
500642	Safety connecting lead, 100 cm , blue	1	1
667193	PVC tubing, 7 mm diam., 1 m	1	1
666716	Valve for gas cartridge	1	1
666715	Cartridge	1	1
543021	Sphere on insulated stand rod		1
50095	Safety adapter sockets, red, set of 6		1

Using a flame probe, the electric potential around a charged object can be investigated in all three dimensions and the equipotential surfaces can be determined.
In the experiment P3.1.3.3, the electric potential of a plate capacitor is investigated. The equipotential surfaces parallel to the capacitor plates are identified by measuring the electrical potential at different positions but with constant distance to the capacitor plates. In addition, the dependance of the variation of the electric potential on the distance to the capacitor plates is determined and used to calculate the electric field strength.
The aim of the experiment P3.1.3.4 is to investigate the electric potential around a charged sphere. The equipotential surfaces are concentric spherical shells around the charged sphere. They are identified by measuring the electrical potential at different positions but with constant distance to the surface of the sphere. In addition, the dependance of the variation of the electric potential on the distance to the surface of the sphere is determined and used to calculate the electric field strength.

Measuring the potential inside a plate capacitor (P3.1.3.3)

EFFECTS OF FORCE IN AN ELECTRIC FIELD

P3.1.4.2

Kirchhoff's voltage balance: Measuring the force between two charged plates of a plate capacitor - Measuring with the force sensor

P3.1.4.3

Measuring the force between a charged sphere and a metal plate

- Measuring with the force sensor

Kirchhoff's voltage balance: Measuring the force between two charged plates of a plate capacitor - Measuring with the force sensor (P3.1.4.2)

Cat. No.	Description		m ¢ п゙
51637	Electrostatics with current balance, accessories	1	1
51631	Vertically adjustable stand	1	1
524005 W	Mobile-CASSY 2 WiFi	1	1
524060	Force sensor S, $\pm 1 \mathrm{~N}$	1	1
314265	Support for conductor loops	1	1
52170	High-voltage power supply, 10 kV	1	
30002	Stand base, V-shaped, small	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1
30101	Leybold multiclamp	1	1
50098	Safety adapter sockets, black, set of 6	1	
500610	Safety connecting lead, 25 cm , yellow/green	1	
500620	Safety connecting lead 50 cm , yellow/green	1	
500622	Safety connecting lead 50 cm , blue	2	
54100	Friction rods, PVC and acrylic		1
54122	Leather cloth		1
500440	Connecting lead, $19 \mathrm{~A}, 100 \mathrm{~cm}$, yellow/green		1

In a homogeneous electric field, the force Facting on an extended charged body is proportional to the total charge Q and the electric field strength E. Thus, the formula

$$
F=Q \cdot E
$$

applies.
The force in an electric field is measured using a force sensor connected to a measuring instrument. The force sensor consists of two bending elements connected in parallel with four strain gauges in a bridge configuration; their electrical resistance changes when a load is applied. The change in resistance is proportional to the force acting on the sensor. The measuring instrument displays the measured force directly.
In the experiment P3.1.4.2 a balance is set up in order to measure the force

$$
\begin{aligned}
& F=\frac{1}{2} \cdot \varepsilon_{0} \cdot \frac{U^{2}}{d^{2}} \cdot A \\
& \text { where } \varepsilon_{0}=8.85 \cdot 10^{-12} \frac{\mathrm{As}}{\mathrm{Vm}} \text { (permittivity) }
\end{aligned}
$$

acting between the two charged plates of a plate capacitor. At a given area A, the measurement is conducted as a function of the plate distance d and the voltage U. The aim of the evaluation is to confirm the proportionalities

$$
F \propto \frac{1}{d^{2}} \text { and } F \propto U^{2}
$$

and to determine the permittivity ε_{0}.
The experiment P3.1.4.3 consists of a practical investigation of the principle of the image charge. Here, the attractive force acting on a charged sphere in front of a metal plate is measured. This force is equivalent to the force of an equal, opposite charge at twice the distance $2 d$. Thus, it is described by the formula

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q^{2}}{(2 d)^{2}}
$$

First, the force for a given charge Q is measured as a function of the distance d. The measurement is then repeated with half the charge. The aim of the evaluation is to confirm the proportionalities

$$
F \propto \frac{1}{d^{2}} \text { and } F \propto Q^{2}
$$

Measuring the force of an electric charge in a homogeneous electric field - Measuring with the force sensor (P3.1.4.4)

EFFECTS OF FORCE IN AN ELECTRIC FIELD

P3.1.4.4
Measuring the force of an electric charge in a homogeneous electric field - Measuring with the force sensor

Cat. No.	Description	$\xrightarrow[\text { + }]{\stackrel{+}{+}}$
54422	Parallel plate capacitor	1
314263	Bodies for electric charge, set	1
524005 W	Mobile-CASSY 2 WiFi	1
524060	Force sensor S, $\pm 1 \mathrm{~N}$	1
52170	High-voltage power supply, 10 kV	1
54100	Friction rods, PVC and acrylic	1
54122	Leather cloth	1
59002	Small clip plug	1
30002	Stand base, V-shaped, small	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30101	Leybold multiclamp	1
500610	Safety connecting lead, 25 cm , yellow/green	1
500640	Safety connecting lead, 100 cm , yellow/green	1
500641	Safety connecting lead, 100 cm , red	1
500642	Safety connecting lead, 100 cm , blue	1

In experiment P3.1.4.4 an electrostatic spoon is charged by a rubbed plastic rod. The electrostatic spoon is within the electric field of a plate capacitor and is aligned parallel to the plates. To verify the proportional relationship between the force and the field strength, the force Facting on the electrostatic spoon is measured at a known plate distance d as a function of the capacitor voltage U. The electric field E is determined using the equation

$$
E=\frac{U}{d}
$$

CHARGE DISTRIBUTIONS ON ELECTRICAL CONDUCTORS

P3.1.5.1

Investigating the charge distribution on the surface of electrical conductors

P3.1.5.2

Electrostatic induction with the hemispheres according to Cavendish

Electrostatic induction with the hemispheres according to Cavendish (P3.1.5.2)

Cat. No.	Description	「	N
543071	Conical conductor on insulating stand	1	
54612	Faraday's cup	2	
54252	Test plate, $4 \mathrm{~cm} \times 4 \mathrm{~cm}$	1	
52170	High-voltage power supply, 10 kV	1	1
501051	Cable for high voltages, 1.5 m	1	1
53214	Electrometer amplifier	1	1
562791	Plug-in power supply, 12 V AC	1	1
57825	Capacitor, 1 nF, STE 2/19	1	1
57810	Capacitor, 10 nF, STE 2/19	1	1
531120	Multimeter LDanalog 20	1	1
590011	Clamping plug	1	
53216	Connecting rod	1	1
54052	Demonstration insulator	1	
501861	Crocodile-clips, polished, set of 6	1	
30011	Saddle base	1	3
500610	Safety connecting lead, 25 cm , yellow/green	1	1
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	1	1
500424	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, black	1	1
50142	Connecting lead $32 \mathrm{~A}, 100 \mathrm{~cm}$, yellow/green	1	1
543021	Sphere on insulated stand rod		1
54305	Cavendish hemispheres, pair		1
34089	Coupling plug 4 mm		1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$		2
30101	Leybold multiclamp		2
59013	Stand rod with bore holes		1

In static equilibrium, the interior of a metal conductor or a hollow body contains neither electric fields nor free electron charges. On the outer surface of the conductor, the free charges are distributed in such a way that the electric field strength is perpendicular to the surface at all points, and all points have equal potential.
In the experiment P3.1.5.1, an electric charge is collected from a charged hollow metal sphere using a charge spoon, and measured using a coulomb meter. It becomes apparent that the charge density is greater, the smaller the bending radius of the surface is. This experiment also shows that no charge can be taken from the interior of the hollow body.
The experiment P3.1.5.2 reconstructs a historic experiment first performed by Cavendish. A metal sphere is mounted on an insulated base. Two hollow hemispheres surround the sphere completely, but without touching it. When one of the hemispheres is charged, the charge distributes itself uniformly over both hemispheres, while the inside sphere remains uncharged. If the inside sphere is charged and then surrounded and contacted by the hemispheres, the two hemispheres again show equal charges, and the inside sphere is uncharged.

DEFINITION OF
 CAPACITANCE

P3.1.6.1

Determining the capacitance of a sphere in free space

P3.1.6.2

Determining the capacitance of a sphere in front of a metal plate

Determining the capacitance of a sphere in free space (P3.1.6.1)

Cat. No.	Description	¢	
54300	Set of 3 conducting spheres	1	1
52170	High-voltage power supply, 10 kV	1	1
501051	Cable for high voltages, 1.5 m	1	1
53214	Electrometer amplifier	1	1
562791	Plug-in power supply, 12 V AC	1	1
57825	Capacitor, 1 nF, STE 2/19	1	1
57810	Capacitor, 10 nF, STE 2/19	1	1
531120	Multimeter LDanalog 20	1	1
54612	Faraday's cup	1	1
590011	Clamping plug	1	1
53216	Connecting rod	1	1
59013	Stand rod with bore holes	1	1
30011	Saddle base	2	3
500610	Safety connecting lead, 25 cm , yellow/green	1	1
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	1	1
500424	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, black	1	1
50143	Connecting lead $32 \mathrm{~A}, 200 \mathrm{~cm}$, yellow/green	1	1
58766	Reflection plate		1
501861	Crocodile-clips, polished, set of 6		1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$		1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		1
50133	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, black		1

The potential difference U of a charged conductor in an insulated mounting in free space with reference to an infinitely distant reference point is proportional to the charge 0 of the body. We can express this using the relationship

$$
Q=C \cdot U
$$

and call C the capacitance of the body. Thus, for example, the capacitance of a sphere with the radius r in a free space is

$$
C=4 \pi \varepsilon_{0} \cdot r
$$

because the potential difference of the charged sphere with respect to an infinitely distant reference point is

$$
\begin{aligned}
& U=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q}{r} \\
& \text { where } \varepsilon_{0}=8.85 \cdot 10^{-12} \frac{\mathrm{As}}{\mathrm{Vm}} \text { (permittivity) }
\end{aligned}
$$

The experiment P3.1.6.1 determines the capacitance of a sphere in a free space by charging the sphere with a known high voltage U and measuring its charge 0 using an electrometer amplifier connected as a coulomb meter. The measurement is conducted for different sphere radii r. The aim of the evaluation is to verify the proportionalities

$$
Q \propto U \text { and } C \propto r
$$

The experiment P3.1.6.2 shows that the capacitance of a body also depends on its environment, e.g. the distance to other earthed conductors. In this experiment, spheres with the radii r are arranged at a distance s from an earthed metal plate and charged using a high voltage U. The capacitance of the arrangement is now

$$
C=4 \pi \varepsilon_{0} \cdot r \cdot\left(1+\frac{r}{2 s}\right)
$$

The aim of the evaluation is to confirm the proportionality between the charge Q and the potential difference U at any given distance s between the sphere and the metal plate.

ELECTRICITY ELECTROSTATICS

PLATE CAPACITOR

P3.1.7. 1
Determining the capacitance of a plate capacitor - Measuring the charge with the electrometer amplifier

P3.1.7.2
Parallel and series connection of capacitors - Measuring the charge with the electrometer amplifier

Determining the capacitance of a plate capacitor - Measuring the charge with the electrometer amplifier (P3.1.7.1)

Cat. No.	Description	「	N
54423	Capacitor assembly kit	1	1
52227	Power supply, 450 V	1	1
50448	Two-way switch	1	1
531120	Multimeter LDanalog 20	2	2
53214	Electrometer amplifier	1	1
57810	Capacitor, 10 nF, STE 2/19	1	1
57831	Capacitor, $0.1 \mu \mathrm{~F}$, STE 2/19	1	1
53216	Connecting rod	1	1
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	4	5
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1	1

A plate capacitor is the simplest form of a capacitor. Its capacitance depends on the plate area A and the plate spacing d. The capacitance increases when an insulator with the dielectric constant ε_{r} is placed between the two plates. The total capacitance is

$$
\begin{aligned}
& C=\varepsilon_{r} \varepsilon_{0} \cdot \frac{A}{d} \\
& \text { where } \varepsilon_{0}=8.85 \cdot 10^{-12} \frac{\mathrm{As}}{\mathrm{Vm}} \text { (permittivity) }
\end{aligned}
$$

In the experiment P3.1.7.1, this relationship is investigated using a demountable capacitor assembly with variable geometry. Capacitor plates with the areas $A=40 \mathrm{~cm}^{2}$ and $A=80 \mathrm{~cm}^{2}$ can be used, as well as various plate-type dielectrics. The distance can be varied in steps of one millimeter.
The experiment P3.1.7.2 determines the total capacitance C of the demountable capacitor with the two plate pairs arranged at a fixed distance and connected first in parallel and then in series, compares these with the individual capacitances C_{1} and C_{2} of the two plate pairs. The evaluation confirms the rela-tionship

$$
C=C_{1}+C_{2}
$$

for parallel connection and

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
$$

for serial connection.

Determining the capacitance of a plate capacitor - Measuring the charge with the I-measuring amplifier D (P3.1.7.3)

PLATE CAPACITOR

P3.1.7.3

Determining the capacitance of a plate capacitor - Measuring the charge with the I-measuring amplifier D

Cat. No.	Description	$\stackrel{\text { m }}{\stackrel{\text { n }}{\stackrel{1}{2}}}$
54422	Parallel plate capacitor	1
52227	Power supply, 450 V	1
50448	Two-way switch	1
53200	I-measuring amplifier D	1
531120	Multimeter LDanalog 20	2
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	3
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1

Calculation of the capacitance of a plate capacitor using the formula

$$
\begin{aligned}
& C=\varepsilon_{0} \cdot \frac{A}{d} \\
& A: \text { plate area } \\
& d: \text { plate spacing }
\end{aligned}
$$

$$
\text { where } \varepsilon_{0}=8.85 \cdot 10^{-12} \frac{\mathrm{As}}{\mathrm{Vm}} \text { (permittivity) }
$$

ignores the fact that part of the electric field of the capacitor extends beyond the edge of the plate capacitor, and that consequently a greater charge is stored for a specific potential difference between the two capacitors. For example, for a plate capacitor grounded on one side and having the area

$$
A=\pi \cdot r^{2}
$$

the capacitance is given by the formula

$$
C=\varepsilon_{0}\left(\frac{\pi \cdot r^{2}}{d}+3.7724 \cdot r+r \cdot \ln \left(\frac{\pi r}{d}\right)+\ldots\right)
$$

In the experiment P3.1.7.3, the capacitance C of a plate capacitor is measured as a function of the plate spacing d with the greatest possible accuracy. This experiment uses a plate capacitor with a plate radius of 13 cm and a plate spacing which can be continuously varied between 0 and 70 mm . The aim of the evaluation is to plot the measured values in the form

$$
C=f\left(\frac{1}{d}\right)
$$

and compare them with the values to be expected according to theory.

PLATE CAPACITOR

P3.1.7.4

Measuring the electric field strength inside a plate capacitor

P3.1.7.5

Measuring the electric field strength inside a plate capacitor as a function of the dielectrics

P3.1.7.6

Measuring the electric field strength of a charged sphere in front of a conductive plate (image charge)

Measuring the electric field strength inside a plate capacitor (P3.1.7.4)

Cat. No.	Description		ก	¢
524080	Electric field meter S	1	1	1
540540	Accessories for electric field meter S	1	1	1
524005 W	Mobile-CASSY 2 WiFi	1	1	1
52170	High-voltage power supply, 10 kV	1		1
460317	Optical bench, S1 profile, 0.5 m	1	1	
460312	Clamp rider with clamp 45/35	2	2	
500600	Safety connection lead, 10 cm , yellow/green	1		1
500641	Safety connecting lead, 100 cm , red	1		1
500642	Safety connecting lead, 100 cm , blue	1		1
531120	Multimeter LDanalog 20		1	
52227	Power supply, 450 V		1	
50445	On-off switch, single pole		1	
500421	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red		3	
500422	Connecting lead 19 A, 50 cm , blue		1	
500442	Connecting lead $19 \mathrm{~A}, 100 \mathrm{~cm}$, blue		1	
543021	Sphere on insulated stand rod			1
31102	Metal rule, 1 m			1
30011	Saddle base			2
50095	Safety adapter sockets, red, set of 6			1

Using the electric field meter S the electric field strength E in a plate capacitor can be measured. The electric field strength depends on the applied voltage U and the distance d of the capacitor plates:

$$
E=\frac{U}{d}
$$

Alternatively, the electrical field strength E can be calculated from the charge 0 on the capacitor plates:

$$
E=\frac{Q}{\varepsilon_{0} \cdot \varepsilon_{r} \cdot A}
$$

Here, E depends on the area of the plates A and the permittivity ε_{r} of the material between the capacitor plates as well.
In the experiment P3.1.7.4 the dependance of the electric field strength E on the applied voltage U and the plate spacing d is determined. First, keeping the distance of the plates constant, the value of the applied voltage U is varied and the electric field strength is measured. Then, the voltage U is kept constant and the dependance of the electric field strength E on the plate spacing d is determined.
The aim of the experiment P3.1.7.5 is to investigate the influence of the permittivity ε_{r} on the field strength E. First, keeping the applied voltage U constant a dielectric (glass, plastics) is placed between the capacitor plates and the electric field strength is measured. Second, the charged capacitor is disconnected from the power supply. Then, the dielectric is removed and the field strength measured again.
In the experiment P3.1.7.6, the electric field strength on the surface of a conductive plate with distance r to a charged sphere is measured. The field gradient in front of the plate is equivalent to the case where instead of the plate a sphere with opposite charge is situated in twice the distance to the sphere (mirror or image charge). This leads to a doubling in field strength compared to a free-standing sphere.

ELECTRICITY FUNDAMENTALS OF ELECTRICITY

OHM'S LAW

P3.2.2. 1

Verifying Ohm's law and measuring specific resistances

P3.2.2.2
Verifying Ohm's law

- Measuring with CASSY

Verifying Ohm's law and measuring specific resistances (P3.2.2.1)

Cat. No.	Description		N N゙ लू
55057	Apparatus for resistance measurements	1	
521487	AC/DC power supply PRO $0 . . .12 \mathrm{~V} / 3 \mathrm{~A}$	1	
531120	Multimeter LDanalog 20	2	
50125	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, red	2	
50130	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, red	1	
50131	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, blue	2	
57681	Plug-in board safety socket, 20/10		2
50148	Bridging plugs STE $2 / 19$, set of 10		1
56718	Wrapping plate for wires		1
55046	Chrome-nickel resistance wire, 0.25 mm diameter, 100 m		1
579331	Plug-in holder STE		2
57913	Toggle switch STE 2/19		1
57732	Resistor 100 Ohm, STE 2/19		1
521231	Low-voltage power supply 3/6/9/12 V		1
524005 W	Mobile-CASSY 2 WiFi		1
500621	Safety connecting lead 50 cm , red		2
500622	Safety connecting lead 50 cm , blue		2
500624	Safety connecting lead 50 cm , black		1

In circuits consisting of metal conductors, Ohm's law

$$
U=R \cdot I
$$

represents a very close approximation of the actual circumstances. In other words, the voltage drop U in a conductor is proportional to the current / through the conductor. The proportionality constant R is called the resistance of the conductor. For the resistance, we can say

$$
\begin{aligned}
& R=\rho \cdot \frac{s}{A} \\
& \rho: \text { resistivity of the conductor material } \\
& s: \text { length of wire } \\
& A: \text { cross-section of wire }
\end{aligned}
$$

The experiment P3.2.2.1 verifies the proportionality between the current and voltage for metal wires of different materials, thicknesses and lengths, and calculates the resistivity of each material.
The experiment P3.2.2.2 verifies the proportionality between the current and voltage for a metal wire using the CASSY system.

ELECTRICITY

FUNDAMENTALS OF ELECTRICITY

KIRCHHOFF'S LAWS

P3.2.3.1

Measuring current and voltage at resistors connected in parallel and in series

Measuring current and voltage at resistors connected in parallel (P3.2.3.1)

Cat. No.	Description	$\overline{\mathrm{m}}$ $\stackrel{\text { N }}{ }$ ñ
57681	Plug-in board safety socket, 20/10	1
57736	Resistor, 220Ω, STE 2/19	1
57738	Resistor, 330Ω, STE 2/19	1
57740	Resistor 470 Ohm, STE 2/19	1
57744	Resistor 1 kOhm, STE 2/19	1
57753	Resistor, 5.6 k Ω, STE 2/19	1
57756	Resistor 10 kOhm , STE 2/19	1
57768	Resistor, $100 \mathrm{k} \Omega$, STE 2/19	1
50148	Bridging plugs STE 2/19, set of 10	1
521487	AC/DC power supply PRO $0 . .12 \mathrm{~V} / 3 \mathrm{~A}$	1
524005 W	Mobile-CASSY 2 WiFi	1
500621	Safety connecting lead 50 cm , red	2
500622	Safety connecting lead 50 cm , blue	2
500624	Safety connecting lead 50 cm , black	1

Kirchhoff's laws are of fundamental importance in calculating the component currents and voltages in branching circuits. The so-called "nodal rule" (or junction rule) states that the sum of all currents flowing into a particular junction point in a circuit is equal to the sum of all currents flowing away from this junction point. The "mesh rule" (or loop rule) states that in a closed path the sum of all voltages through the loop in any arbitrary direction of flow is zero. Kirchhoff's laws are used to derive a system of linear equations which can be solved for the unknown current and voltage components.
The experiment P3.2.3.1 examines the validity of Kirchhoff's laws in circuits with resistors connected in parallel and in series. The result demonstrates that two resistors connected in series have a total resistance R

$$
R=R_{1}+R_{2}
$$

while for parallel connection of resistors, the total resistance R is

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

KIRCHHOFF'S LAWS

P3.2.3.4
Determining resistances using a Wheatstone bridge

Determining resistances using a Wheatstone bridge (P3.2.3.4)

Cat. No.	Description	+ N゙ N゙
53602	Demonstration bridge	1
536121	Measuring resistor, 10Ω	1
536131	Measuring resistor, 100Ω	1
536141	Measuring resistor, $1 \mathrm{k} \Omega$	1
536776	Decade resistor, 0... $\mathrm{k} \Omega$	1
536777	Decade resistor, 0... 100Ω	1
536778	Decade resistor, 0... 10Ω	1
536779	Decade resistor, 0... 1Ω	1
521487	AC/DC power supply PRO $0 \ldots . .12 \mathrm{~V} / 3 \mathrm{~A}$	1
531131	Galvanometer PT 3204	1
50126	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, blue	2
50128	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, black	3
50130	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, red	1
50131	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, blue	1

In modern measuring practice, the bridge configuration developed in 1843 by Ch. Wheatstone is used almost exclusively.
In the experiment P3.2.3.4, a voltage U is applied to a 1 m long measuring wire with a constant cross-section. The ends of the wire are connected to an unknown resistor R_{x} and a variable resistor R arranged behind it, whose value is known precisely. A sliding contact divides the measuring wire into two parts with the lengths s_{1} and s_{2}. The slide contact is connected to the node between R_{x} and R via an ammeter which is used as a zero indicator. Once the current has been regulated to zero, the relationship

$$
R_{x}=\frac{s_{1}}{s_{2}} \cdot R
$$

applies. Maximum accuracy is achieved by using a symmetrical experiment setup, i. e. when the slide contact over the measuring wire is set in the middle position so that the two sections s_{1} and s_{2} are the same length.

Circuit diagram of Wheatstone bridge (P3.2.3.4)

ELECTRICITY

FUNDAMENTALS OF ELECTRICITY

CIRCUITS WITH ELECTRICAL MEASURING INSTRUMENTS

P3.2.4. 1

The ammeter as an ohmic resistor in a circuit

P3.2.4.2
The voltmeter as an ohmic resistor in a circuit

The ammeter as an ohmic resistor in a circuit (P3.2.4.1)

Cat. No.	Description	耳	$\stackrel{\text { N }}{\stackrel{\text { N }}{\sim}}$
521487	AC/DC power supply PRO $0 . .12 \mathrm{~V} / 3 \mathrm{~A}$	1	1
57681	Plug-in board safety socket, 20/10	1	1
57733	Resistor, 82Ω, STE 2/19	3	
57752	Resistor 4.7 kOhm , STE 2/19	1	1
531110	Multimeter LDanalog 10	2	2
50148	Bridging plugs STE 2/19, set of 10	1	
500621	Safety connecting lead 50 cm , red	3	3
500622	Safety connecting lead 50 cm , blue	3	3
57775	Resistor, $680 \mathrm{k} \Omega$, STE 2/19		1
57771	Resistor, $220 \mathrm{k} \Omega$, STE 2/19		1

One important consequence of Kirchhoff's laws is that the internal resistance of an electrical measuring instrument affects the respective current or voltage measurement. Thus, an ammeter increases the overall resistance of a circuit by the amount of its own internal resistance and thus measures a current value which is too low whenever the internal resistance is above a negligible level. A voltmeter measures a voltage value which is too low when its internal resistance is not great enough with respect to the resistance at which the voltage drop is to be measured.

In the experiment P3.2.4.1, the internal resistance of an ammeter is determined by measuring the voltage which drops at the ammeter during current measurement. It is subsequently shown that the deflection of the ammeter pointer is reduced by half, or that the current measuring range is correspondingly doubled, by connecting a second resistor equal to the internal resistance in parallel to the ammeter.

The experiment P3.2.4.2 determines the internal resistance of a voltmeter by measuring the current flowing through it. In this experiment, the measuring range is extended by connecting a second resistor with a value equal to the internal resistance to the voltmeter in series.

CONDUCTING ELECTRICITY BY MEANS OF ELECTROLYSIS

P3.2.5.1
Determining the Faraday constant

Determining the Faraday constant (P3.2.5.1)

Cat. No.	Description	
664350	Water electrolysis apparatus	1
38235	Thermometer, $-10 \ldots+50^{\circ} \mathrm{C} / 0.1 \mathrm{~K}$	1
531832	Digital multimeter P	1
521487	AC/DC power supply PRO $0 \ldots . .12 \mathrm{~V} / 3 \mathrm{~A}$	1
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1
64945	Tray, $552 \mathrm{~mm} \times 459 \mathrm{~mm} \times 48 \mathrm{~mm}$	1
6747920	Sulfuric acid, diluted, approx. $2 \mathrm{~N}, 500 \mathrm{ml}$	1

In electrolysis, the processes of electrical conduction entails liberation of material. The quantity of liberated material is proportional to the transported charge 0 flowing through the electrolyte. This charge can be calculated using the Faraday constant F, a universal constant which is related to the unit charge e by means of Avogadro's number N_{A}.

$$
F=N_{A} \cdot e
$$

When we insert the molar mass n for the material quantity and take the valence z of the separated ions into consideration, we obtain the relationship

$$
Q=n \cdot F \cdot z
$$

In the experiment P3.2.5.1, a specific quantity of hydrogen is produced in an electrolysis apparatus according to Hofmann to determine the Faraday constant. The valance of the hydrogen ions is $z=1$. The molar mass n of the liberated hydrogen atoms is calculated using the laws of ideal gas on the basis of the volume V of the hydrogen collected at an external pressure p and room temperature T :

$$
\begin{aligned}
& n=2 \cdot \frac{p V}{R T} \\
& \text { where } R=8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \text { (universal gas constant) }
\end{aligned}
$$

At the same time, the electric work W is measured which is expended for electrolysis at a constant voltage U_{0}. The transported charge quantity is then

$$
Q=\frac{W}{U_{0}}
$$

ELECTRICITY

MAGNETOSTATICS

BASIC EXPERIMENTS ON MAGNETOSTATICS

P3.3.1. 1
Displaying lines of magnetic flux

Displaying lines of magnetic flux (P3.3.1.1)

Cat. No.	Description	
560701	Magnetic field demonstration set	1
726890	DC-High Current Power Supply 1... $32 \mathrm{~V} / 0 \ldots 20 \mathrm{~A}$	1
50126	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, blue	1
50130	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, red	1
50131	Connecting lead, 32 A, 100 cm , blue	1
MIK 74708	BMS SyncCam 8Mp	1^{*}
	additionally required: PC or device for image display	1

*additionally recommended

Magnetostatics studies the spatial distribution of magnetic fields in the vicinity of permanent magnets and stationary currents as well as the force exerted by a magnetic field on magnets and currents. Basic experiments on this topic can be carried out without complex experiment setups.
In the experiment P3.3.1.1, magnetic fields are observed by spreading iron filings over a smooth surface so that they align themselves with the lines of magnetic flux. By this means it becomes possible to display the magnetic field of a straight conductor, the magnetic field of a conductor loop and the magnetic field of a coil.

Displaying lines of magnetic flux (P3.3.1.1)

EFFECTS OF FORCE IN A MAGNETIC FIELD

P3.3.3.1
Measuring the force acting on currentcarrying conductors in the field of a horseshoe magnet

P3.3.3.2
Measuring the force acting on currentcarrying conductors in a homogeneous magnetic field - Recording with CASSY

Measuring the force acting on current-carrying conductors in the field of a horseshoe magnet (P3.3.3.1)

Cat. No.	Description	戸̈	N m m ñ
51022	Large horseshoe magnet with yoke	1	
314265	Support for conductor loops	1	1
51634	Conductor loops for force measurement	1	1
726890	DC-High Current Power Supply 1... 32 V/0... 20 A	1	1
524005 W	Mobile-CASSY 2 WiFi	1	
524060	Force sensor $\mathrm{S}, \pm 1 \mathrm{~N}$	1	1
30002	Stand base, V-shaped, small	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1
30101	Leybold multiclamp	1	1
50130	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, red	1	2
50131	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, blue	1	2
56211	U-core with yoke		1
56214	Coil, 500 turns		2
56225	Pole-shoe yoke		1
524013	Sensor-CASSY 2		1
524220	CASSY Lab 2		1
5240431	30-A-Box		1
531183	Digital multimeter 3340		1
521487	AC/DC power supply PRO $0 . . .12 \mathrm{~V} / 3 \mathrm{~A}$		1
50126	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, blue		3
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)		1

To measure the force acting on a current-carrying conductor in a magnetic field, conductor loops are attached to a force sensor. The force sensor contains two bending elements arranged in parallel with four strain gauges connected in a bridge configuration; their resistance changes in proportion to the force when a strain is applied. The force sensor is connected to the CASSY computer interface device. A 30 ampere box is recommended for current measurement.
In the experiment P3.3.3.1, the conductor loops are placed in the magnetic field of a horseshoe magnet. This experiment measures the force F as a function of the current l, the conductor length s and the angle α between the magnetic field and the conductor, and reveals the relationship

$$
F=I \cdot s \cdot B \cdot \sin \alpha
$$

In the experiment P3.3.3.2, a homogeneous magnetic field is generated using an electromagnet with U-core and pole-piece attachment. This experiment measures the force F as a function of the current l. The measurement results for various conductor lengths s are compiled and evaluated in a graph.

EFFECTS OF FORCE IN A MAGNETIC FIELD

P3.3.3.3

Measuring the force acting on current-carrying conductors in the magnetic field of an air coil - Recording with CASSY

P3.3.3.4

Basic measurements for the electrodynamic definition of the ampere

Measuring the force acting on current-carrying conductors in the magnetic field of an air coil - Recording with CASSY (P3.3.3.3)

Cat. No.	Description	m m m ñ	¢ m m ñ
314265	Support for conductor loops	1	1
51634	Conductor loops for force measurement	1	
516244	Field coil, $\mathrm{d}=120 \mathrm{~mm}$	1	
516249	Stand for tubes and coils	1	
524013	Sensor-CASSY 2	1	
524220	CASSY Lab 2	1	
5240431	30-A-Box	1	
524060	Force sensor S, $\pm 1 \mathrm{~N}$	1	1
521546	DC Power Supply 0...16 V/0... 5 A	1	
726890	DC-High Current Power Supply 1... 32 V/0... 20 A	1	1
30002	Stand base, V-shaped, small	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1
30101	Leybold multiclamp	1	1
50126	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, blue	1	1
50130	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, red	2	1
50131	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, blue	2	1
51633	Conductors for Ampere definition		1
51631	Vertically adjustable stand		1
524005 W	Mobile-CASSY 2 WiFi		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	

To measure the force acting on a current-carrying conductor in a magnetic field, conductor loops are attached to a force sensor. The force sensor contains two bending elements arranged in parallel with four strain gauges connected in a bridge configuration; their resistance changes in proportion to the force when a strain is applied. The force sensor is connected to the CASSY computer interface device. A 30 ampere box is recommended for current measurement.
The experiment P3.3.3.3 uses an air coil to generate the magnetic field. The magnetic field is calculated from the coil parameters and compared with the values obtained from the force measurement.
The object of the experiment P3.3.3.4 is the former electrodynamic definition of the ampere. Here, the current is defined on the basis of the force exerted between two parallel conductors of infinite length which carry an identical current. When r represents the distance between the two conductors, the force per unit of length of the conductor is:

$$
\frac{F}{s}=\mu_{0} \cdot \frac{I_{2}}{2 \pi \cdot r}
$$

This experiment uses two conductors approx. 30 cm long, placed just a few millimeters apart. The forces F are measured as a function of the different current levels / and distances r.

BIOT-SAVART'S LAW

P3.3.4.1

Measuring the magnetic field for a straight conductor and on circular conductor loops

P3.3.4.2

Measuring the magnetic field of an air coil

P3.3.4.4

Measuring the magnetic field for a straight conductor and on circular conductor loops at small currents

P3.3.4.5
Measuring the magnetic field of an air coil at small currents

Measuring the magnetic field for a straight conductor and on circular conductor loops (P3.3.4.1)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Cat. No. \& Description \& 「 \& $$
\begin{aligned}
& \underset{\sim}{+} \\
& \dot{\sim} \\
& \underset{\sim}{2}
\end{aligned}
$$ \& $\dot{+}$
¢
ח் \& ?
\sim

\sim

\hline 516235 \& Current conductors, set of 4 \& 1 \& \& 1 \&

\hline 524005 W \& Mobile-CASSY 2 WiFi \& 1 \& 1 \& 1 \& 1

\hline 5240381 \& Combi B sensor S \& 1 \& \& \&

\hline 50111 \& Extension cable, 15 pin \& 1 \& 1 \& 1 \& 1

\hline 726890 \& DC-High Current Power Supply 1... $32 \mathrm{~V} / 0 . . .20 \mathrm{~A}$ \& 1 \& 1 \& \&

\hline 46021 \& Holder for plug-in elements \& 1 \& \& 1 \&

\hline 460310 \& Optical bench, S1 profile, 1 m \& 1 \& \& 1 \&

\hline 460311 \& Clamp rider with clamp 45/65 \& 1 \& \& 1 \&

\hline 460312 \& Clamp rider with clamp 45/35 \& 1 \& \& 1 \&

\hline 501644 \& Two-way adapters, black, set of 6 \& 1 \& \& 1 \&

\hline 50130 \& Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, red \& 1 \& 1 \& 1 \& 1

\hline 50131 \& Connecting lead, 32 A, 100 cm , blue \& 1 \& 1 \& 1 \& 1

\hline 516242 \& Coil with variable number of turns per unit length \& \& 1 \& \& 1

\hline 516249 \& Stand for tubes and coils \& \& 1 \& \& 1

\hline 5240382 \& Axial B sensor $S_{1} \pm 1000 \mathrm{mT}$ \& \& 1 \& \&

\hline 30011 \& Saddle base \& \& 1 \& \&

\hline 5240383 \& Axial B sensor $\mathrm{S}, \pm 0.3 \mathrm{mT}$ \& \& \& 1 \& 1

\hline 521546 \& DC Power Supply 0... $16 \mathrm{~V} / 0 . .5 \mathrm{~A}$ \& \& \& 1 \& 1

\hline 30101 \& Leybold multiclamp \& \& \& 1 \&

\hline 30042 \& Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam. \& \& \& 1 \&

\hline
\end{tabular}

The magnetic field B of circular conductor loops with radius R as a function of the space coordinate x (P3.3.4.1).

In principle, it is possible to calculate the magnetic field of any current-carrying conductor using Biot and Savart's law. However, analytical solutions can only be derived for conductors with certain symmetries, e.g. for an infinitely long straight wire, a circular conductor loop and a cylindrical coil. Biot and Savart's law can be verified easily using these types of conductors.
In the experiments P3.3.4.1 and P3.3.4.4, the magnetic field of a long, straight conductor is measured for various currents / as a function of the distance r from the conductor. The result is a quantitative confirmation of the relationship

$$
B=\frac{\mu_{0}}{2 \pi} \cdot \frac{l}{r}
$$

In addition, the magnetic fields of circular coils with different radii R are measured as a function of the distance x from the axis through the center of the coil. The measured values are compared with the values which are calculated using the equation

$$
B=\frac{\mu_{0}}{2} \cdot \frac{l \cdot R^{2}}{\left(R^{2}+x^{2}\right)^{\frac{3}{2}}}
$$

The measurements in P3.3.4.1 are carried out using the combi B sensor. This device contains two Hall sensors for the field measurements. In experiment P3.3.4.4 a sensitive magnetic field sensor is used and the experiment is performed at low current levels.
The experiments P3.3.4.2 and P3.3.4.5 investigate the magnetic field of an air coil in which the length L can be varied for a constant number of turns N. For the magnetic field the relationship

$$
B=\mu_{0} \cdot I \cdot \frac{N}{L}
$$

applies.

ELECTRICITY

MAGNETOSTATICS

BIOT-SAVART'S LAW

P3.3.4.3
Measuring the magnetic field of a pair of coils in the Helmholtz configuration

P3.3.4.6
Measuring the magnetic field of a pair of coils in the Helmholtz configuration at small currents

Measuring the magnetic field of a pair of coils in the Helmholtz configuration (P3.3.4.3)

Cat. No.	Description	ぞ ̇ ñ	
555604	Pair of Helmholtz coils	1	1
524005 W	Mobile-CASSY 2 WiFi	1	1
5240382	Axial B sensor $\mathrm{S}, \pm 1000 \mathrm{mT}$	1	
50111	Extension cable, 15 pin	1	1
521546	DC Power Supply 0... $16 \mathrm{~V} / 0 . .5 \mathrm{~A}$	1	1
460310	Optical bench, S1 profile, 1 m	1	1
460311	Clamp rider with clamp 45/65	1	1
460312	Clamp rider with clamp 45/35	2	2
50126	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, blue	1	1
50130	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, red	1	1
50131	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, blue	1	2
5240383	Axial B sensor $\mathrm{S}, \pm 0.3 \mathrm{mT}$		1

In principle, it is possible to calculate the magnetic field of any current-carrying conductor using Biot and Savart's law. However, analytical solutions can only be derived for conductors with certain symmetries, e.g. for an infinitely long straight wire, a circular conductor loop and a cylindrical coil. Biot and Savart's law can be verified easily using these types of conductors.
The experiments P3.3.4.3 and P3.3.4.6 examine the homogeneity of the magnetic field in a pair of Helmholtz coils. The magnetic field along the axis through the coil centers is recorded in several measurement series; the spacing a between the coils is varied from measurement series to measurement series. When a is equal to the coil radius, the magnetic field is essentially independent of the location x on the coil axis.

ELECTRICITY ELECTROMAGNETIC INDUCTION

VOLTAGE IMPULSE

P3.4.1.1
Generating a voltage surge in a conductor loop with a moving permanent magnet

Generating a voltage surge in a conductor loop with a moving permanent magnet (P3.4.1.1)

Cat. No.	Description	F ¢ ®̇
51012	Cylindrical bar magnets, pair	1
56213	Coil, 250 turns	1
56214	Coil, 500 turns	1
56215	Coil, 1000 turns	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

[^6]Each change in the magnetic flux Φ through a conductor loop induces a voltage U, which has a level proportional to the change in the flux. Such a change in the flux is caused e. g. when a permanent magnet is moved inside a fixed conductor loop. In this case, it is common to consider not only the time-dependent voltage

$$
U=-\frac{d \Phi}{d t}
$$

but also the voltage surge

$$
\int_{t_{1}}^{t_{2}} U(t) d t=\Phi\left(t_{1}\right)-\Phi\left(t_{2}\right)
$$

This corresponds to the difference in the magnetic flux densities before and after the change.
In the experiment P3.4.1.1, the voltage surge is generated by manually inserting a bar magnet into an air coil, or pulling it out of a coil. The curve of the voltage U over time is measured and the area inside the curve is evaluated. This is always equal to the flux Φ of the permanent magnet inside the air coil independent of the speed at which the magnet is moved, i. e. proportional to the number of turns of the coil for equal coil areas.

INDUCTION IN A MOVING CONDUCTOR LOOP

P3.4.2. 1
Measuring the induction voltage in a conductor loop moved through a magnetic field

Measuring the induction voltage in a conductor loop moved through a magnetic field (P3.4.2.1)

Cat. No.	Description	$\dot{\sim}$ $\stackrel{\rightharpoonup}{+}$ $\dot{\sim}$
51640	Induction apparatus with wire loops	1
51048	Magnets, $35 \mathrm{~mm} \emptyset$, pair	6
34738	Experiment motor 93 W	1
521547	DC Power Supply 0... $30 \mathrm{~V} / 0 . .5 \mathrm{~A}$	1
524005 W	Mobile-CASSY 2 WiFi	1
5240401	$\mu \mathrm{V}$ sensor S	1
500641	Safety connecting lead, 100 cm , red	1
500642	Safety connecting lead, 100 cm , blue	1

When a conductor loop with the constant width b is withdrawn from a homogeneous magnetic field B with the speed

$$
v=\frac{d x}{d t}
$$

the magnetic flux changes over the time $d t$ by the value

$$
d \Phi=-B \cdot b \cdot d x
$$

This change in flux induces the voltage

$$
U=B \cdot b \cdot v
$$

in the conductor loop.
In the experiment P3.4.2.1, a slide on which induction loops of various widths are mounted is moved between the two pole pieces of a magnet. The object is to measure the induction voltage U as a function of the magnetic flux density B, the width b and the speed v of the induction loops. The aim of the evaluation is to verify the proportionalities

$$
U \propto B, U \propto b, U \propto v
$$

[^7]INDUCTION BY MEANS OF A VARIABLE MAGNETIC FIELD

P3.4.3.2
Measuring the induction voltage in a conductor loop for a variable magnetic field - with Power-CASSY as variable source of current

Measuring the induction voltage in a conductor loop for a variable magnetic field - with Power-CASSY as variable source of current (P3.4.3.2)

Cat. No.	Description	
516249	Stand for tubes and coils	1
516244	Field coil, $\mathrm{d}=120 \mathrm{~mm}$	1
516241	Induction coils, set of 3	1
$\begin{aligned} & 524011 \text { USB } \\ & 524013 \end{aligned}$	Power-CASSY USB Sensor-CASSY 2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
524220	CASSY Lab 2	1
5240401	$\mu \mathrm{V}$ sensor S	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	2
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

A change in the homogeneous magnetic field B inside a coil with N_{1} windings and the area A_{1} over time induces the voltage

$$
U=N_{1} \cdot A_{1} \cdot \frac{d B}{d t}
$$

in the coil.
In the experiment P3.4.3.2, induction coils with different areas and numbers of turns are arranged in a cylindrical field coil through which alternating currents of various frequencies, amplitudes and signal forms flow. In the field coil, the currents generate the magnetic field

$$
\begin{aligned}
& B=\mu_{0} \cdot \frac{N_{2}}{L_{2}} \cdot I \\
& \text { where } \mu_{0}=4 \pi \cdot 10^{-7} \frac{\mathrm{Vs}}{\mathrm{Am}} \text { (permeablility) }
\end{aligned}
$$

and $I(t)$ is the time-dependent current level, N_{2} the number of turns and L_{2} the overall length of the coil. The curve over time $U(t)$ of the voltages induced in the induction coils is recorded using CASSY system. This experiment explores how the voltage is dependent on the area and the number of turns of the induction coils, as well as on the frequency, amplitude and signal form of the exciter current.

TRANSFORMER

P3.4.5.1

Voltage and current transformation with a transformer

P3.4.5.2

Voltage transformation with a transformer under load

P3.4.5.3
Recording the voltage and current of a transformer under load as a function of time

Voltage and current transformation with a transformer (P3.4.5.1)

Cat. No.	Description	$\bar{\circ}$ $\stackrel{\sim}{n}$ $\dot{\sim}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\dot{\circ}} \\ & \end{aligned}$	n $\stackrel{1}{+}$
562801	Transformer for students' experiments	1	1	1
531120	Multimeter LDanalog 20	2	2	
521391	AC/DC power supply $0 . . .24 \mathrm{~V} / 5 \mathrm{~A}$	1	1	
500444	Connecting lead $19 \mathrm{~A}, 100 \mathrm{~cm}$, black	6	7	6
53734	Rheostat, 100 ohms		1	1
45923	Acrylic glass screen on rod		1	
51472	Shaker for iron filings		1	
51473	Iron powder		1	
524013	Sensor-CASSY 2			1
524 011USB	Power-CASSY USB			1
524220	CASSY Lab 2			1
500414	Connecting lead, 19 A, 25 cm , black			1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)			1

Voltage transformation with a transformer under load (P3.4.5.2)

Regardless of the physical design of the transformer, the voltage transformation of a transformer without load is determined by the ratio of the respective number of turns

$$
\frac{U_{2}}{U_{1}}=\frac{N_{2}}{N_{1}}\left(\text { when } I_{2}=0\right)
$$

The current transformation in short-circuit operation is inversely proportional to the ratio of the number of turns

$$
\frac{I_{2}}{I_{1}}=\frac{N_{2}}{N_{1}}\left(\text { when } U_{2}=0\right)
$$

The behavior of the transformer under load, on the other hand, depends on its particular physical design. This fact can be demonstrated using the transformer for students' experiments.
The aim of the experiment P3.4.5.1 is to measure the voltage transformation of a transformer without load and the current transformation of a transformer in short-circuit mode. At the same time, the difference between an isolating transformer and an autotransformer is demonstrated.
The experiment P3.4.5.2 examines the ratio between primary and secondary voltage in a "hard" and a "soft" transformer under load. In both cases, the lines of magnetic flux of the transformer are revealed using iron filings on a glass plate placed on top of the transformer.
In the experiment P3.4.5.3, the primary and secondary voltages and the primary and secondary currents of a transformer under load are recorded as timedependent quantities using CASSY system. The CASSY software determines the phase relationships between the four quantities directly and additionally calculates the time-dependent power values of the primary and secondary circuits.

TRANSFORMER

P3.4.5.4
Power transmission of a transformer

Power transmission of a transformer (P3.4.5.4)

Cat. No.	Description	$\xrightarrow[+]{+1}$
56211	U-core with yoke	1
562121	Clamping device with spring clip	1
56213	Coil, 250 turns	2
524 011USB	Power-CASSY USB	1
524220	CASSY Lab 2	1
53734	Rheostat, 100 ohms	1
500414	Connecting lead, 19 A, 25 cm , black	1
500444	Connecting lead $19 \mathrm{~A}, 100 \mathrm{~cm}$, black	6
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1

As an alternative to the transformer for students' experiments, the demountable transformer with a full range of coils is available which simply slide over the arms of the U-core, making them easily interchangeable. The experiments described for the transformer for students' experiments (P3.4.5.1-3) can of course be performed just as effectively using the demountable transformer, as well as a number of additional experiments.

The experiment P3.4.5.4 examines the power transmission of a transformer. Here, the RMS values of the primary and secondary voltage and the primary and secondary current are measured on a variable load resistor $R=0-100 \Omega$ using CASSY system. The phase shift between the voltage and current on the primary and secondary sides is determined at the same time. In the evaluation, the primary power P_{1}, the secondary power P_{2} and the efficiency

$$
\eta=\frac{P_{2}}{P_{1}}
$$

are calculated and displayed in a graph as a function of the load resistance R.

ELECTRICITY

ELECTROMAGNETIC INDUCTION

MEASURING THE EARTH'S MAGNETIC FIELD

P3.4.6.2
Measuring the earth's magnetic field with a rotating induction coil and CASSY

Measuring the earth's magnetic field with a rotating induction coil and CASSY (P3.4.6.2)

Cat. No.	Description	N 0
555604	Pair of Helmholtz coils	1
34822	Gyroscope axle	1
524005 W	Mobile-CASSY 2 WiFi	1
5240401	$\mu \mathrm{V}$ sensor S	1
30101	Leybold multiclamp	1
666615	Universal bosshead	1
50144	Connecting leads, $19 \mathrm{~A}, 25 \mathrm{~cm}$, red/blue, pair	1

When a circular induction loop with N turns and a radius R rotates in a homogeneous magnetic field B around its diameter as its axis, it is permeated by a magnetic flux of

$$
\begin{aligned}
& \Phi(t)=N \cdot \pi \cdot R^{2} \cdot n(t) \cdot B \\
& n(t): \text { normal vector of a rotating loop }
\end{aligned}
$$

If the angular velocity ω is constant, we can say that

$$
\Phi(t)=N \cdot \pi \cdot R^{2} \cdot B_{\perp} \cdot \cos \omega t
$$

Where B is the effective component of the magnetic field perpendicular to the axis of rotation. We can determine the magnetic field from the amplitude of the induced voltage

$$
U_{0}=N \cdot \pi \cdot R^{2} \cdot B_{\perp} \cdot \omega
$$

To achieve the maximum measuring accuracy, we need to use the largest possible coil.

In the experiment P3.4.6.2 the voltage $U(t)$ induced in the earth's magnetic field is measured in the rotating system and stored or transmitted wirelessly using the computer-based Mobile-CASSY measuring system. The amplitude and frequency of the recorded signals are used to calculate the horizontal component of the earth's magnetic field.

Generating AC voltage using a generator with electromagnetic rotating pole (power-plant generator) (P3.5.2.3)

ELECTRIC GENERATORS

P3.5.2. 1

Generating AC voltage using a revolving-field generator and a stationary-field generator

P3.5.2.2
Generating DC voltage using a stationary-field generator

P3.5.2.3
Generating AC voltage using a generator with electromagnetic rotating pole (power-plant generator)

P3.5.2.4
Generating voltage with an AC/DC generator (generator with electromagnetic stationary pole)

Cat. No.	Description	「	$\underset{\sim}{n}$ $\underset{\sim}{n}$ $\underset{\sim}{n}$	n 	
563480	ELM basic set	1	1	1	1
72781	Basic machine unit	1	1	1	1
563303	ELM hand-cranked gear	1	1	1	1
72619	Panel frame SL85, single-level	1	1	1	1
531120	Multimeter LDanalog 20	2	1	2	2
31327	Hand-held stop-watch, 60s/0.2s	1			
53736	Rheostat, 1000 ohms	1			
500621	Safety connecting lead 50 cm , red	1		1	1
500622	Safety connecting lead 50 cm , blue	1		1	1
500641	Safety connecting lead, 100 cm , red	2	1	2	2
500642	Safety connecting lead, 100 cm , blue	2	1	1	2
56323	ELM three-pole rotor		1*		
575302	Oscilloscope 30 MHz , digital, PT1265		1^{*}		
57524	Screened cable, BNC/4 mm		1^{*}		
521487	AC/DC power supply PRO $0 \ldots .12 \mathrm{~V} / 3 \mathrm{~A}$			1	1

* additionally recommended

Electric generators exploit the principle of electromagnetic induction discovered by Faraday to convert mechanical into electrical energy. We distinguish between revolving-armature generators (excitation of the magnetic field in the stator, induction in the rotor) and revolving-field generators (excitation of the magnetic field in the rotor, induction in the stator).
Both types of generators are assembled in the experiment P3.5.2.1 using permanent magnets. The induced $A C$ voltage U is measured as a function of the speed f of the rotor. Also, the electrical power P produced at a fixed speed is determined as a function of the load resistance R.
The experiment P3.5.2.2 demonstrates the use of a commutator to rectify the $A C$ voltage generated in the rotor of a rotating-armature generator. The number of rectified half-waves per rotor revolution increases when the two-pole rotor is replaced with a threepole rotor.
The experiments P3.5.2.3 and P3.5.2.4 investigate generators which use electromagnets instead of permanent magnets. Here, the induced voltage depends on the excitation current of the magnetic field. The excitation current can be used to vary the generated power without changing the speed of the rotor or the frequency of the AC voltage. This principle is used in power-plant generators. In the AC/DC generator, the voltage can also be tapped via the commutator in rectified form.

ELECTRIC MOTORS

P3.5.3. 1

Experiments on DC motor with two-pole rotor

P3.5.3.2

Experiments on DC motor with three-pole rotor

P3.5.3.3

Experiments with a universal motor in shunt connection

P3.5.3.4
Assembling an AC synchronous motor

Experiments with a universal motor in shunt connection (P3.5.3.3)

Cat. No.	Description		$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \text { N. } \end{aligned}$	$\begin{aligned} & \text { m} \\ & \text { ஸ゙ } \\ & \dot{\sim} \end{aligned}$	
563480	ELM basic set	1	1	1	1
72781	Basic machine unit	1	1	1	1
72619	Panel frame SL85, single-level	1	1	1	1
531120	Multimeter LDanalog 20	2	2	2	
521391	AC/DC power supply 0... $24 \mathrm{~V} / 5 \mathrm{~A}$	1	1	1	1
451281	Stroboscope	1	1	1	1
500621	Safety connecting lead 50 cm , red	1	1	2	
500622	Safety connecting lead 50 cm , blue	1	1	2	
500641	Safety connecting lead, 100 cm , red	2	2	2	2
500642	Safety connecting lead, 100 cm , blue	2	2	2	2
56323	ELM three-pole rotor		1	1^{*}	
314151	Precision dynamometer, 2 N		1	1	
314161	Precision dynamometer, 5 N		1	1	
30950	Demonstration cord		1	1	
666470	Holder with clamp, height-adjustable, CPS		1	1	
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$		1	1	
563303	ELM hand-cranked gear				1
726501	Safety socket plug-in board, $297 \mathrm{~mm} \times 200 \mathrm{~mm}$				1
57913	Toggle switch STE 2/19				1
57906	Lamp holder, E10, top, STE 2/19				1
505181	Bulbs, $24 \mathrm{~V} / 3 \mathrm{~W}, \mathrm{E} 10$, set of 5				1

[^8]Electric motors exploit the force acting on current-carrying conductors in magnetic fields to convert electrical energy into mechanical energy. We distinguish between asynchronous motors, in which the rotor is supplied with AC or DC voltage via a commutator, and synchronous motors, which have no commutator, and whose frequencies are synchronized with the frequency of the applied voltage.
The experiment P3.5.3.1 investigates the basic function of an electric motor with commutator. The motor is assembled using a permanent magnet as stator and a two-pole rotor. The polarity of the rotor current determines the direction in which the rotor turns. This experiment measures the relationship between the applied voltage U and the no-load speed f_{0}.
The use of the three-pole rotor is the object of the experiment P3.5.3.2. The rotor starts turning automatically, as an angular momentum (torque) acts on the rotor for any position in the magnetic field. To record the torque curve $M(f)$, the speed f of the rotor is recorded as a function of a counter-torque M. In addition, the mechanical power produced is compared with the electrical power consumed.
The experiment P3.5.3.3 takes a look at the so-called universal motor, in which the stator and rotor fields are electrically excited. The stator and rotor coils are connected in series ("serieswound") or in parallel ("shunt-wound") to a common voltage source. This motor can be driven both with DC and AC voltage, as the torque acting on the rotor remains unchanged when the polarity is reversed. The torque curve $M(f)$ is recorded for both circuits. The experiment shows that the speed of the shuntwound motor is less dependent on the load than that of the series-wound motor.
In the experiment P3.5.3.4, the rotor coil of the AC synchronous motor is synchronized with the frequency of the applied voltage using a hand crank, so that the rotor subsequently continues running by itself.

THREE-PHASE MACHINES

P3.5.4.1
Experiments with a three-phase revolving-armature generator

P3.5.4.2
Experiments with a three-phase revolving-field generator

P3.5.4.3
Comparing star and delta connections on a three-phase generator

P3.5.4.4
Assembling synchronous and asynchronous three-phase motors

Comparing star and delta connections on a three-phase generator (P3.5.4.3)

Cat. No.	Description	$\begin{aligned} & \bar{j} \\ & \text { ๗் } \\ & \text { ח் } \end{aligned}$	N $\stackrel{\text { in }}{n}$ ñ		$\stackrel{+}{+}$
563480	ELM basic set	1	1	1	1
563481	ELM supplementary set	1	1	1	1
72781	Basic machine unit	1	1	1	1
563303	ELM hand-cranked gear	1	1	1	
72619	Panel frame SL85, single-level	1	1	1	1
531120	Multimeter LDanalog 20	3	3	2	1
500624	Safety connecting lead 50 cm , black	6	6	7	4
575302	Oscilloscope 30 MHz , digital, PT1265	1^{*}	1^{*}		
57524	Screened cable, BNC/4 mm	2*	2^{*}		
31327	Hand-held stop-watch, 60s/0.2s	1^{*}	1^{*}		
521487	AC/DC power supply PRO $0 . .12 \mathrm{~V} / 3 \mathrm{~A}$		1	1	
500621	Safety connecting lead 50 cm , red		1	3	1
500622	Safety connecting lead 50 cm , blue		1	2	1
726501	Safety socket plug-in board, $297 \mathrm{~mm} \times 200 \mathrm{~mm}$			1	
57906	Lamp holder, E10, top, STE 2/19			3	
50514	Bulbs, $6 \mathrm{~V} / 3 \mathrm{~W}, \mathrm{E10}$, set of 10			1	
50148	Bridging plugs STE 2/19, set of 10			1	
500614	Safety connecting lead, 25 cm , black			3	3
56312	ELM squirrel-cage rotor				1
521291	Three-phase extra-low voltage transformer				1

* additionally recommended

In the real world, power is supplied mainly through the generation of three-phase AC, usually referred to simply as "threephase current". Consequently, three-phase generators and motors are extremely significant in actual practice. In principle, their function is analogous to that of AC machines. As with AC machines, we differentiate between revolving-armature and revolving-field generators, and between asynchronous and synchronous motors.
The simplest configuration for generating three-phase current, a revolvingarmature generator which rotates in a permanent magnetic field, is assembled in the experiment P3.5.4.1 using a threepole rotor.

The experiment P3.5.4.2 examines the more common revolving-field generator, in which the magnetic field of the rotor in the stator coils is induced by phase-shifted AC voltages. In both cases, instruments for measuring current and voltage, and for observing the phase shift for a slowly turning rotor, are connected between two taps. For faster rotor speeds, the phase shift is measured using an oscilloscope.
In the experiment P3.5.4.3, loads are connected to the three-phase generator in star and delta configuration. In the star configuration, the relationship

$$
\frac{U_{a a}}{U_{a 0}}=\sqrt{3}
$$

is verified for the voltages $U_{\text {aa }}$ between any two outer conductors as well as $U_{\text {ad }}$ between the outer and neutral conductors. For the currents I_{1} flowing to the loads and the currents I_{2} flowing through the generator coils in delta configuration, the result is

$$
\frac{I_{1}}{I_{2}}=\sqrt{3}
$$

The experiment P3.5.4.4 examines the behavior of asynchronous and synchronous machines when the direction of rotation is reversed.

It can also be displayed with an oscilloscope (P3.5.4.2)

ELECTRICITY

DC AND AC CIRCUITS

CIRCUIT WITH CAPACITOR

P3.6.1.1

Charging and discharging a capacitor when switching DC on and off

P3.6.1.2

Determining the capacitive reactance of a capacitor in an AC circuit

P3.6.1.3
Charging and discharging a capacitor when switching DC on and off

- Measuring with a multimeter

P3.6.1.4

Charging and discharging a capacitor when switching DC on and off

- Measuring with Mobile-CASSY

P3.6.1.5

Determining the capacitive reactance of a capacitor in an AC circuit

- Measuring with Mobile-CASSY

Determining the capacitive reactance of a capacitor in an AC circuit - Measuring with Mobile-CASSY (P3.6.1.5)

Cat. No.	Description			$\begin{aligned} & \text { n} \\ & \underset{\sim}{6} \\ & \end{aligned}$	$\dot{7}$ $\dot{\circ}$ $\dot{\square}$	
57681	Plug-in board safety socket, 20/10	1	1	1	1	1
57815	Capacitor, 1μ F, STE 2/19	3	3		3	3
57740	Resistor 470 Ohm, STE 2/19	1			1	
57744	Resistor 1 kOhm, STE 2/19	1			1	
57748	Resistor, $2.2 \mathrm{k} \Omega$, STE 2/19	1			1	
522621	Function generator S 12	1	1		1	1
575302	Oscilloscope 30 MHz , digital, PT1265	1	1			
57524	Screened cable, BNC/4 mm	2	2			
500641	Safety connecting lead, 100 cm , red	1	1		3	3
500642	Safety connecting lead, 100 cm , blue	1	1		2	2
57719	Resistor, 1 , STE 2/19		1			
57720	Resistor, 10Ω, STE 2/19		1			1
57816	Capacitor, 4.7μ F, STE 2/19			1		
57812	Capacitor, $10 \mu \mathrm{~F}$, STE 2/50			1		
57776	Resistor, $1 \mathrm{M} \Omega$, STE 2/19			1		
58281	Change-over switch STE 4/50			1		
50148	Bridging plugs STE 2/19, set of 10			1		
521487	AC/DC power supply PRO $0 . . .12 \mathrm{~V} / 3 \mathrm{~A}$			1		
531120	Multimeter LDanalog 20			1		
31327	Hand-held stop-watch, 60s/0.2s			1		
500621	Safety connecting lead 50 cm , red			2		
500622	Safety connecting lead 50 cm , blue			2		
524005 W	Mobile-CASSY 2 WiFi				1	1
524438	Voltage sensor M, $\pm 30 \mathrm{~V}$				1	1
500644	Safety connecting lead, 100 cm , black				1	1

To investigate the behavior of capacitors in DC and AC circuits, the voltage U_{C} at a capacitor is measured using a two-channel oscilloscope, and the current I_{C} through the capacitor is additionally calculated from the voltage drop across a resistor R connected in series. Alternatively a Mobile-CASSY 2 is used. The circuits for conducting these measurements are assembled on a plug-in board using the STE plug-in system. A function generator is used as a voltage source with variable amplitude and variable frequency.
In the experiments P3.6.1.1 and P3.6.1.4, the function generator generates periodic square-wave signals which simulate switching a DC voltage on and off. In experiment P3.6.1.1 the square-wave signals are displayed on channel I of the oscilloscope, and the capacitor voltage or capacitor current is displayed on oscilloscope channel II, while in experiment P3.6.1.4 the current and voltage are recorded by Mobile-CASSY 2. The aim of the experiment is to determine the time constant

$$
\tau=R \cdot C
$$

for various capacitances C from the exponential curve of the respective charging or discharge current I_{C}.
In the experiments P3.6.1.2 and P3.6.1.5, an AC voltage with the amplitude U_{0} and the frequency f is applied to a capacitor. The voltage $U_{C}(t)$ and the current $I_{C}(t)$ are displayed simultaneously on the oscilloscope (P3.6.1.2) or recorded by Mobile-CASSY 2 (P3.6.1.5). The experiment shows that in this circuit the current leads the voltage by 90°. In addition, the proportionality between the voltage amplitude U_{0} and the current amplitude I_{0} is confirmed, and for the proportionality constant

$$
Z_{C}=\frac{U_{0}}{I_{0}}
$$

the relationship

$$
Z_{C}=-\frac{1}{2 \pi f \cdot C}
$$

is revealed.
In experiment P3.6.1.3 a large capacitor is charged and discharged with a long

Schematic circuit diagram (P3.6.1.2+5)

CIRCUIT WITH COIL

P3.6.2. 1

Measuring the current in a coil when switching DC on and off

P3.6.2.2

Determining the inductive reactance of a coil in an AC circuit

P3.6.2.3
Measuring the current in a coil when switching DC on and off - Measuring with Mobile-CASSY

P3.6.2.4

Determining the inductive reactance of a coil in an AC circuit - Measuring with Mobile-CASSY

Measuring the current in a coil when switching DC on and off - Measuring with Mobile-CASSY (P3.6.2.3)

Cat. No.	Description		N $\underset{\sim}{n}$ $\dot{0}$		
57681	Plug-in board safety socket, 20/10	1	1	1	1
59084	Coil 1000 turns STE 2/50	2	2	2	2
57719	Resistor, 1Ω, STE 2/19	1	1		
57720	Resistor, 10Ω, STE 2/19	1	1	1	1
57724	Resistor, 22Ω, STE 2/19	1		1	
57728	Resistor 47 Ohm, STE 2/19	1		1	
50148	Bridging plugs STE 2/19, set of 10	1	1		
522621	Function generator S 12	1	1	1	1
575302	Oscilloscope 30 MHz , digital, PT1265	1	1		
57524	Screened cable, BNC/4 mm	2	2		
500641	Safety connecting lead, 100 cm , red	1	1	3	3
500642	Safety connecting lead, 100 cm , blue	1	1	2	2
524005 W	Mobile-CASSY 2 WiFi			1	1
524438	Voltage sensor M, $\pm 30 \mathrm{~V}$			1	1
500644	Safety connecting lead, 100 cm , black			1	1

To investigate the behavior of coils in DC and AC circuits, the voltage U_{L} at a coil is measured using a two-channel oscilloscope, and the current I_{L} through the coil is additionally calculated from the voltage drop across a resistor R connected in series. Alternatively a Mobile-CASSY 2 can be used. The circuits for conducting these measurements are assembled on a plug-in board using the STE plug-in system for electricity/electronics. A function generator is used as a voltage source with variable amplitude and variable frequency.
In the experiments P3.6.2.1 and P3.6.2.3, the function generator generates periodic square-wave signals which simulate switching a DC voltage on and off. In experiment P3.6.2.1 the square-wave signals are displayed on channel I of the oscilloscope, and the coil voltage or coil current is displayed on oscilloscope channel II, while in experiment P3.6.2.3 the current and voltage are recorded by Mobile-CASSY 2. The aim of the experiment is to determine the time constant

$$
\tau=\frac{L}{R}
$$

for different inductances L from the exponential curve of the coil voltage U_{L}. In the experiments P3.6.2.2 and P3.6.2.4, an AC voltage with the amplitude U_{0} and the frequency f is applied to a coil. The voltage $U_{L}(t)$ and the current $I_{L}(t)$ are displayed simultaneously on the oscilloscope (P3.6.2.2) or recorded by Mobile-CASSY 2 (P3.6.2.4). The experiment shows that in this circuit the current lags behind the voltage by 90°. In addition, the proportionality between the voltage amplitude U_{0} and the current amplitude I_{0} is confirmed, and, for the proportionality constant

$$
Z_{L}=\frac{U_{0}}{I_{0}}
$$

the relationship

$$
Z_{L}=2 \pi f \cdot L
$$

is revealed.

ELECTRICITY

DC AND AC CIRCUITS

IMPEDANCES

P3.6.3.1

Determining the impedance in circuits with capacitors and ohmic resistors

P3.6.3.2

Determining the impedance in circuits with coils and ohmic resistors
P3.6.3.3
Determining the impedance in circuits with capacitors and coils

P3.6.3.4

Determining the impedance in circuits with capacitors and ohmic resistors

- Measuring with Mobile-CASSY

P3.6.3.5

Determining the impedance in circuits with coils and ohmic resistors

- Measuring with Mobile-CASSY

P3.6.3.6
Determining the impedance in circuits with capacitors and coils

- Measuring with Mobile-CASSY

Determining the impedance in circuits with capacitors and ohmic resistors - Measuring with Mobile-CASSY (P3.6.3.4)

Cat. No.	Description	$\begin{aligned} & \bar{m} \\ & \dot{\circ} \\ & \dot{\circ} \end{aligned}$		m ñ ñ	$\dot{+}$ \dot{m} $\dot{\circ}$ $\dot{\circ}$		0 \tilde{m} 0 $\dot{\circ}$
57681	Plug-in board safety socket, 20/10	1	1	1	1	1	1
57719	Resistor, 1 , STE 2/19	1	1				
57732	Resistor 100 Ohm, STE 2/19	1	1	1	1	1	1
57812	Capacitor, $10 \mu \mathrm{~F}$, STE 2/50	1			1		
57815	Capacitor, $1 \mu \mathrm{~F}$, STE 2/19	1		1	1		1
57831	Capacitor, $0.1 \mu \mathrm{~F}$, STE 2/19	1			1		
522621	Function generator S 12	1	1	1	1	1	1
575302	Oscilloscope 30 MHz , digital, PT1265	1	1	1			
57524	Screened cable, BNC/4 mm	2	2	2			
500641	Safety connecting lead, 100 cm , red	1	1	1	2	2	3
500642	Safety connecting lead, 100 cm , blue	1	1	1	2	2	2
59083	Coil 500 turns STE 2/50		1	1		1	1
59084	Coil 1000 turns STE 2/50		1	1		1	1
57720	Resistor, 10Ω, STE 2/19			1			1
57816	Capacitor, $4.7 \mu \mathrm{~F}$, STE 2/19			1			1
524005 W	Mobile-CASSY 2 WiFi				1	1	1
500644	Safety connecting lead, 100 cm , black				1	1	1
524438	Voltage sensor M, $\pm 30 \mathrm{~V}$						1

The current $I(t)$ and the voltage $U(t)$ in an AC circuit are measured as timedependent quantities using a dual-channel oscilloscope or a Mobile-CASSY 2. A function generator is used as a voltage source with variable amplitude U_{0} and variable frequency f. The measured quantities are then used to determine the absolute value of the total impedance

$$
Z=\frac{U_{0}}{I_{0}}
$$

and the phase shift φ between the current and the voltage.

ELECTRICITY DC AND AC CIRCUITS

MEASURING-BRIDGE CIRCUITS

P3.6.4.1
Determining capacitive reactance with a Wien measuring bridge

P3.6.4.2
Determining inductive reactance with a Maxwell measuring bridge

P3.6.4.3

Determining capacitive reactance with a Wien measuring bridge

- Measuring with Mobile-CASSY

P3.6.4.4
Determining inductive reactance with a Maxwell measuring bridge

- Measuring with Mobile-CASSY

Determining capacitive reactance with a Wien measuring bridge - Measuring with Mobile-CASSY (P3.6.4.3)

Cat. No.	Description	\mp $\dot{-}$ $\dot{\circ}$ $\dot{\square}$		そ + ¢ ח்	+ + 0 \square
57681	Plug-in board safety socket, 20/10	2	2	2	2
57732	Resistor 100 Ohm, STE 2/19	1	1	1	1
57793	Potentiometer, $1 \mathrm{k} \Omega, 10$-turn, STE 4/50	1	2	1	2
57815	Capacitor, 1μ F, STE 2/19	1		1	
57816	Capacitor, $4.7 \mu \mathrm{~F}$, STE $2 / 19$	1	1	1	1
575302	Oscilloscope 30 MHz , digital, PT1265	1	1		
57524	Screened cable, BNC/4 mm	1	1		
522621	Function generator S 12	1	1	1	1
50148	Bridging plugs STE 2/19, set of 10	1	1	1	1
500621	Safety connecting lead 50 cm , red	1	1	2	2
500622	Safety connecting lead 50 cm , blue	1	1	1	1
59083	Coil 500 turns STE 2/50		1		1
59084	Coil 1000 turns STE 2/50		1		1
524005 W	Mobile-CASSY 2 WiFi			1	1
500624	Safety connecting lead 50 cm , black			1	1

Schematic circuit diagramm: Wien measruing bridge (left) - Maxwell measuring bridge (right) (P3.6.4.1-4)

The Wheatstone measuring bridge is one of the most effective means of measuring ohmic resistance in DC and AC circuits. Capacitive and inductive reactance can also be determined by means of analogous circuits. These measuring bridges consist of four passive bridge arms which are connected to form a rectangle, an indicator arm with a null indicator and a supply arm with the voltage source. Inserting variable elements in the bridge arm compensates the current in the indicator arm to zero. Then, for the component resistance values, the fundamental compensation condition

$$
Z_{1}=Z_{2} \cdot \frac{Z_{3}}{Z_{4}}
$$

applies, from which the measurement quantity Z_{1} is calculated.
TheexperimentsP3.6.4.1 andP3.6.4.3 investigatestheprincipleofaWien measuring bridge for measuring a capacitive reactance Z_{1}. In this configuration, Z_{2} is a fixed capacitive reactance, Z_{3} is a fixed ohmic resistance and Z_{4} is a variable ohmic resistance. For zero compensation, the following applies regardless of the frequency of the $A C$ voltage:

$$
\frac{1}{C_{1}}=\frac{1}{C_{2}} \cdot \frac{R_{3}}{R_{4}}
$$

An oscilloscope or Mobile-CASSY 2 can be used as a zero indicator.
In the experiments P3.6.4.2 and P3.6.4.4, a Maxwell measuring bridge is assembled to determine the inductive reactance Z_{1}. As the resistive component of Z_{1} is also to be compensated, this circuit is somewhat more complicated. Here, Z_{2} is a variable ohmic resistance, Z_{3} is a fixed ohmic resistance and Z_{4} is a parallel connection consisting of a capacitive reactance and a variable ohmic resistor. For the purely inductive component, the following applies with respect to zero compensation:

$$
\begin{aligned}
& 2 \pi f \cdot L_{1}=R_{2} \cdot R_{3} \cdot 2 \pi f \cdot C_{4} \\
& f: A C \text { voltage frequency }
\end{aligned}
$$

ELECTRICITY

DC AND AC CIRCUITS

ELECTRICAL WORK AND POWER

P3.6.6. 1
Determining the heating power of an ohmic load in an AC circuit as a function of the applied voltage

Determining the heating power of an ohmic load in an AC circuit as a function of the applied voltage (P 3.6 .6 .1)

Cat. No.	Description	¢ 0 $\dot{0}$ \cdots
38421	Cover for calorimeter	1
38422	Heating wire for calorimeter cover	1
38452	Aluminium calorimeter	1
524005 W	Mobile-CASSY 2 WiFi	1
521391	AC/DC power supply 0... $24 \mathrm{~V} / 5 \mathrm{~A}$	1
59006	Plastic beaker	1
50128	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, black	4

The relationship between the power P at an ohmic resistance R and the applied voltage U can be expressed with the relationship

$$
P=\frac{U^{2}}{R}
$$

The same applies for AC voltage when P is the power averaged over time and U is replaced by the RMS value

$$
\begin{aligned}
& U_{\mathrm{rms}}=\frac{U_{0}}{\sqrt{2}} \\
& U_{0}: \text { amplitude of } A C \text { voltage }
\end{aligned}
$$

The relationship

$$
P=U \cdot I
$$

can also be applied to ohmic resistors in AC circuits when the direct current / is replaced by the RMS value of the AC

$$
\begin{aligned}
& I_{\mathrm{ms}}=\frac{I_{0}}{\sqrt{2}} \\
& I_{0}: \text { amplitude of } \mathrm{AC}
\end{aligned}
$$

In the experiment P3.6.6.1, the electrical power of an immersion heater for extralow voltage is determined from the Joule heat emitted per unit of time and compared with the applied voltage $U_{\text {rms }}$. This experiment confirms the relationship

$$
P \propto U_{\mathrm{rms}}^{2}
$$

ELECTRICAL WORK AND

 POWERP3.6.6.3
Quantitative comparison of DC power and $A C$ power in an incandescent lamp

P3.6.6.4

Determining the crest factors of various $A C$ signal forms

P3.6.6.5
Determining the active and reactive power in $A C$ circuits

Determining the active and reactive power in AC circuits (P3.6.6.5)

Cat. No.	Description	n 0 $\dot{0}$ $\tilde{\circ}$	$\begin{aligned} & \dot{\oplus} \\ & \dot{\oplus} \\ & \dot{ஜ} \end{aligned}$? 0 0
531831	Joule and wattmeter	1	1	1
50514	Bulbs, $6 \mathrm{~V} / 3 \mathrm{~W}, \mathrm{E} 10$, set of 10	1		
57906	Lamp holder, E10, top, STE 2/19	2		
57681	Plug-in board safety socket, 20/10	1		
521487	AC/DC power supply PRO $0 \ldots . .12 \mathrm{~V} / 3 \mathrm{~A}$	1		
500621	Safety connecting lead 50 cm , red	1		
500622	Safety connecting lead 50 cm , blue	1		
500641	Safety connecting lead, 100 cm , red	2		
500642	Safety connecting lead, 100 cm , blue	2		
522621	Function generator S 12		1	
536131	Measuring resistor, 100Ω		1	
575302	Oscilloscope 30 MHz , digital, PT1265		1	1
57524	Screened cable, BNC/4 mm		1	1
50145	Connecting lead 19 A, 50 cm , red/blue, pair		2	1
521391	AC/DC power supply 0... $24 \mathrm{~V} / 5 \mathrm{~A}$			1
53735	Rheostat, 330 ohms			1
517021	Capacitor, $40 \mu \mathrm{~F}$			1
56211	U-core with yoke			1
562121	Clamping device with spring clip			1
56215	Coil, 1000 turns			1
57535	Adapter, BNC/4 mm, 2-pole			1
50445	On-off switch, single pole			1
500421	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red			2
50146	Connecting leads 19 A, 100 cm , red/blue, pair			2

The electrical power of a time-dependent voltage $U(t)$ at any load resisance is also a function of time:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{t})=\mathrm{U}(\mathrm{t}) \cdot \mathrm{I}(\mathrm{t}) \\
& \mathrm{I}(\mathrm{t}): \text { time-dependent current through the load resistor }
\end{aligned}
$$

Thus, for periodic currents and voltages, we generally consider the power averaged over one period T. This quantity is often referred to as the active power P_{w}. It can be measured electronically for any DC or AC voltages using the joule and wattmeter. In the experiment P3.6.6.3, two identical incandescent light bulbs are operated with the same electrical power. One bulb is operated with DC voltage, the other with $A C$ voltage. The equality of the power values is determined directly using the joule and wattmeter, and additionally by comparing the lamp brightness levels. This equality is reached when the DC voltage equals the RMS value of the $A C$ voltage.
The object of the experiment P3.6.6.4 is to determine the crest factors, i. e. the quotients of the amplitude U_{0} and the RMS value $U_{\text {rms }}$ for different AC voltage signal forms generated using a function generator by experimental means. The amplitude is measured using the joule and wattmeter connected to a PC. The RMS value is calculated from the power P measured at an ohmic resistor R using the joule and wattmeter according to the formula

$$
U_{\text {eff }}=\sqrt{P \cdot R}
$$

The experiment P3.6.6.5 measures the current $\mathrm{I}_{\text {rms }}$ through a given load and the active power P_{W} for a fixed AC voltage $U_{\text {rms }}$. To verify the relationship

$$
P_{\mathrm{w}}=U_{\mathrm{rms}} \cdot I_{\mathrm{rms}} \cdot \cos \varphi
$$

the phase shift φ between the voltage and the current is additionally determined using an oscilloscope. This experiment also shows that the active power for a purely inductive or capacitive load is zero, because the phase shift is $\varphi=90^{\circ}$. The apparent power

$$
P_{\mathrm{s}}=U_{\mathrm{rms}} \cdot I_{\mathrm{rms}}
$$

[^9]
ELECTROMAGNETIC OSCILLATOR CIRCUIT

P3.7.1.1
Free electromagnetic oscillations

Free electromagnetic oscillations (P3.7.1.1)

Cat. No.	Description	「
517011	Coil with high inductance	1
517021	Capacitor, $40 \mu \mathrm{~F}$	1
301339	Stand bases, pair	2
50148	Bridging plugs STE 2/19, set of 10	1
521487	AC/DC power supply PRO $0 \ldots . .12 \mathrm{~V} / 3 \mathrm{~A}$	1
524005 W	Mobile-CASSY 2 WiFi	1
500641	Safety connecting lead, 100 cm , red	2
500642	Safety connecting lead, 100 cm , blue	2

Electromagnetic oscillation usually occurs in a frequency range in which the individual oscillations cannot be seen with the naked eye. However, this is not the case in an oscillator circuit consisting of a high-capacity capacitor ($\mathrm{C}=40 \mu \mathrm{~F}$) and a high-inductance coil $(\mathrm{L}=500 \mathrm{H})$. Here, the oscillation period is about 1 s , so that the voltage and current oscillations can be observed directly on a pointer instrument.

The experiment P3.7.1.1 investigates the phenomenon of free electromagnetic oscillations. The damping is so low that multiple oscillation periods can be observed and their duration measured. In the process, the deviations between the observed oscillation periods and those calculated using Thomson's equation

$$
T=2 \pi \cdot \sqrt{L \cdot C}
$$

are observed. These deviations can be explained by the current dependency of the inductance, as the permeability of the iron core of the coil depends on the magnetic field strength.

ELECTRICITY ELECTROMAGNETIC OSCILLATIONS AND WAVES

DECIMETER-RANGE WAVES

P3.7.2.1

Radiation characteristic and polarization of decimeter waves

P3.7.2.2

Amplitude modulation of decimeter waves

P3.7.2.4

Estimating the dielectric constant of water in the decimeter-wave range

Estimating the dielectric constant of water in the decimeter-wave range (P3.7.2.4)

Cat. No.	Description	¢	N゙	$\xrightarrow[\text { ¢ }]{\substack{\text { ², }}}$
587551	UHF wave generator	1	1	1
531110	Multimeter LDanalog 10	1		
30011	Saddle base	2	3	1
50138	Connecting lead, $32 \mathrm{~A}, 200 \mathrm{~cm}$, black	2		
522621	Function generator S 12		1	
53220	AC/DC amplifier 30 W		1	
58708	Broad-band speaker		1	
57524	Screened cable, BNC/4 mm		1	
50133	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, black		4	
58754	Dipoles in water tank			1

It is possible to excite electromagnetic oscillations in a straight conductor in a manner analogous to an oscillator circuit. An oscillator of this type emits electromagnetic waves, and their radiated intensity is greatest when the conductor length is equivalent to exactly one half the wavelength (we call this a $\lambda / 2$ dipole). Experiments on this topic are particularly impressive with wavelengths in the decimeter range. We can best demonstrate the existence of such decimeter waves using a second dipole which also has the length $\lambda / 2$, and from which the voltage is applied to an incandescent lamp or (via a high-frequency rectifier) to a measuring instrument.
The experiment P3.7.2.1 investigates the radiation characteristic of a $\lambda / 2$ dipole for decimeter waves. Here, the receiver is aligned parallel to the transmitter and moved around the transmitter. In a second step, the receiver is rotated with respect to the transmitter in order to demonstrate the polarization of the emitted decimeter waves.

The experiment P3.7.2.2 deal with the transmission of audio-frequency signals using amplitude-modulated decimeter waves. In amplitude modulation a decimeter-wave signal

$$
E(t)=E_{0} \cdot \cos (2 \pi \cdot f \cdot t)
$$

is modulated through superposing of an audio-frequency signal $u(t)$ in the form

$$
\begin{aligned}
& E_{\mathrm{AM}}(t)=E_{0} \cdot\left(1+k_{\mathrm{AM}} \cdot u(t)\right) \cdot \cos (2 \pi \cdot f \cdot t) \\
& k_{\mathrm{AM}}: \text { coupling coefficient }
\end{aligned}
$$

The experiment P3.7.2.4 demonstrates the dielectric nature of water. In water, decimeter waves of the same frequency propagate with a shorter wavelength than in air. Therefore, a receiver dipole tuned for reception of the wavelength in air is no longer adequately tuned when placed in water.

ELECTRICITY

ELECTROMAGNETIC OSCILLATIONS AND WAVES

PROPAGATION OF
 DECIMETER-RANGE WAVES ALONG LINES

P3.7.3. 1

Determining the current and voltage maxima on a Lecher line

P3.7.3.2
Investigating the current and voltage on a Lecher line with a loop dipole

Determining the current and voltage maxima on a Lecher line (P3.7.3.1)

Cat. No.	Description	
587551	UHF wave generator	1
58756	Lecher system with accessories	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1
30011	Saddle base	3

E. Lecher (1890) was the first to suggest using two parallel wires for directional transmission of electromagnetic waves. Using such Lecher lines, as they are known today, electromagnetic waves can be transmitted to any point in space. They are measured along the line as a voltage $U(x, t)$ propagating as a wave, or as a current $I(x, t)$.
In the experiment P3.7.3.1, a Lecher line open at the wire ends and a shorted Lecher line are investigated. The waves are reflected at the ends of the wires, so that standing waves are formed. The current is zero at the open end, while the voltage is zero at the shorted end. The current and voltage are shifted by $\lambda / 4$ with respect to each other, i. e. the wave antinodes of the voltage coincide with the wave nodes of the current. The voltage maxima are located using a probe with an attached incandescent lamp. An induction loop with connected incandescent lamp is used to detect the current maxima. The wavelength λ is determined from the intervals d between the current maxima or voltage maxima. We can say

$$
d=\frac{\lambda}{2}
$$

In the experiment P3.7.3.2, a transmitting dipole ($\lambda / 2$ folded dipole) is attached to the end of the Lecher line. Subsequently, it is no longer possible to detect any voltage or current maxima on the Lecher line itself. A current maximum is detectable in the middle of the dipole, and voltage maxima at the dipole ends.

MICROWAVES

P3.7.4. 1

Directional characteristic and polarization of microwaves in front of a horn antenna

P3.7.4.2
Absorption of microwaves
P3.7.4.3
Interference of microwaves
P3.7.4.4
Diffraction of microwaves
P3.7.4.5
Refraction of microwaves
P3.7.4.6
Total reflection of microwaves

Diffraction of microwaves (P3.7.4.4)

Cat. No.	Description	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{\dot{H}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { m} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$			
73701	Gunn oscillator	1	1	1	1	1
737020	Gunn power supply with amplifier	1	1	1	1	1
73721	Large horn antenna	1	1	1	1	1
73735	Electric field probe	1	1	1	1	1
688809	Stand rod $245 \mathrm{~mm}, 10 \mathrm{~mm} \emptyset$, with thread M6	1	1	1	1	1
73727	Physics microwave accessories I	1	1	1		
531120	Multimeter LDanalog 20	1	1	1	1	1
30011	Saddle base	2	2	4	2	1
501022	BNC cable, 2 m	2	2	2	2	2
501461	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, black, pair	1	1	1	1	1
737390	Set of Microwave Absorbers	1^{*}	1*	1^{*}	1^{*}	1^{*}
737275	Physics microwave accessories II		1	1	1	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$		1			
30002	Stand base, V-shaped, small					1

* additionally recommended

Microwaves are electromagnetic waves in the wavelength range between 0.1 mm and 100 mm . They are generated e.g. in a cavity resonator, whereby the frequency is determined by the volume of the cavity resonator. An E-field probe is used to detect the microwaves; this device measures the parallel component of the electric field. The output signal of the probe is proportional to the square of the field strength, and thus to the intensity.
The experiment P3.7.4.1 investigates the orientation and polarization of the microwave field in front of a radiating horn antenna. Here, the field in front of the horn antenna is measured point by point in both the longitudinal and transverse directions using the E-field probe. To determine the polarization, a rotating polarization grating made of thin metal strips is used; in this apparatus, the electric field can only form perpendicular to the metal strips. The polarization grating is set up between the horn antenna and the E-field probe. This experiment shows that the electric field vector of the radiated microwaves is perpendicular to the long side of the horn radiator.
The experiment P3.7.4.2 deals with the absorption of microwaves. Working on the assumption that reflections may be ignored, the absorption in different materials is calculated using both the incident and the transmitted intensity. This experiment reveals a fact which has had a profound impact on modern cooking: microwaves are absorbed particularly intensively by water.
In the experiment P3.7.4.3, standing microwaves are generated by reflection at a metal plate. The intensity, measured at a fixed point between the horn antenna and the metal plate, changes when the metal plate is shifted longitudinally. The distance between two intensity maxima corresponds to one half the wavelength. Inserting a dielectric in the beam path shortens the wavelength.
The experiments P3.7.4.4 and P3.7.4.5 show that many of the properties of microwaves are comparable to those of visible light. The diffraction of microwaves at an edge, a single slit, a double slit and an obstacle are investigated. Additionally, the refraction of microwaves is demonstrated and the validity of Snell's law of refraction is confirmed.
The experiment P3.7.4.6 investigates total reflection of microwaves at media with lower refractive indices. We know from wave mechanics that the reflected wave penetrates about three to four wavelengths deep into the medium with the lower refractive index, before traveling along the boundary surface in the form of surface waves. This is verified in an experiment by placing an absorber (e.g. a hand) on the side of the medium with the lower refractive index close to the boundary surface and observing the decrease in the reflected intensity.

ELECTRICITY

ELECTROMAGNETIC OSCILLATIONS AND WAVES

PROPAGATION OF MICROWAVES ALONG LINES

P3.7.5. 1
Guiding of microwaves along a Lecher line

P3.7.5.2

Qualitative demonstration of guiding of microwaves along a metal waveguide

Guiding of microwaves along a Lecher line (P3.7.5.1)

Cat. No.	Description	「	ก
73701	Gunn oscillator	1	1
737020	Gunn power supply with amplifier	1	1
73721	Large horn antenna	1	1
73735	Electric field probe	1	1
688809	Stand rod $245 \mathrm{~mm}, 10 \mathrm{~mm} \emptyset$, with thread M6	1	1
737275	Physics microwave accessories II	1	
531120	Multimeter LDanalog 20	1	1
30011	Saddle base	2	1
501022	BNC cable, 2 m	2	2
501461	Connecting leads 19 A, 100 cm , black, pair	1	1
737390	Set of Microwave Absorbers	1*	
73727	Physics microwave accessories I		1

* additionally recommended

To minimize transmission losses over long distances, microwaves can also be transmitted along lines. For this application, metal waveguides are most commonly used; Lecher lines, consisting of two parallel wires, are less common.
Despite this, the experiment P3.7.5.1 investigates the guiding of microwaves along a Lecher line. The voltage along the line is measured using the E-field probe. The wavelengths are determined from the spacing of the maxima.
The experiment P3.7.5.2 demonstrates the guiding of microwaves along a hollow metal waveguide. First, the E-field probe is used to verify that the radiated intensity at a position beside the horn antenna is very low. Next, a flexible metal waveguide is set up and bent so that the microwaves are guided to the E-field probe, where they are measured at a greater intensity.

DIRECTIONAL CHARACTERISTIC OF DIPOLE RADIATION

P3.7.6.1

Directional characteristic of a helix antenna - Recording measured values manually

P3.7.6.2

Directional characteristic of a Yagi antenna - Recording measured values manually

Directional characteristic of a helix antenna - Recording measured values manually (P3.7.6.1)

Cat. No.	Description	ז-¢	
737440	Helical Antenna Kit	1	
73703	Coax Detector	1	
737407	Antenna Stand with Amplifier	1	1
737020	Gunn power supply with amplifier	1	1
73701	Gunn oscillator	1	1
73721	Large horn antenna	1	1
688809	Stand rod $245 \mathrm{~mm}, 10 \mathrm{~mm} \emptyset$, with thread M6	2	2
737390	Set of Microwave Absorbers	1	1
531120	Multimeter LDanalog 20	1	1
30011	Saddle base	1	1
501022	BNC cable, 2 m	1	1
57524	Screened cable, BNC/4 mm	1	1
501461	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, black, pair	2	2
737415	Set of wire antennas		1

Directional characteristic of a Yagi antenna - Recording measured values manually (P3.7.6.2)

Directional antennas radiate the greater part of their electromagnetic energy in a particular direction and/or are most sensitive to reception from this direction. All directional antennas require dimensions which are equivalent to multiple wavelengths. In the microwave range, this requirement can be fulfilled with an extremely modest amount of cost and effort. Thus, microwaves are particularly suitable for experiments on the directional characteristics of antennas.
In the experiment P3.7.6.1, the directional characteristic of a helical antenna is recorded. As the microwave signal is excited with a linearly polarizing horn antenna, the rotational orientation of the helical antenna (clockwise or counterclockwise) is irrelevant. The measurement results are represented in the form of a polar diagram, from which the unmistakable directional characteristic of the helical antenna can be clearly seen.
In the experiment P3.7.6.2, a dipole antenna is expanded using parasitic elements to create a Yagi antenna, to improve the directional properties of the dipole arrangement. Here, a total of four shorter elements are placed in front of the dipole as directors, and a slightly longer element placed behind the dipole serves as a reflector. The directional factor of this arrangement is determined from the polar diagram.

MALTESE-CROSS TUBE

P3.8.3.1
Demonstrating the linear propagation of electrons in a field-free space

P3.8.3.2
Deflection of electrons in an axial magnetic field

Deflection of electrons in an axial magnetic field (P3.8.3.2)

Cat. No.	Description	¢	N m n ñ
555620	Maltese cross tube	1	1
555600	Tube stand	1	1
52170	High-voltage power supply, 10 kV	1	1
51048	Magnets, 35 mm Ø, pair	1	
500611	Safety connecting lead, 25 cm , red	1	1
500621	Safety connecting lead 50 cm , red	1	2
500641	Safety connecting lead, 100 cm , red	1	2
500642	Safety connecting lead, 100 cm , blue	1	2
500644	Safety connecting lead, 100 cm , black	2	2
555604	Pair of Helmholtz coils		1
521546	DC Power Supply 0...16 V/0... 5 A		1
500622	Safety connecting lead 50 cm , blue		1

In the Maltese cross tube, the electrons are accelerated by the anode to a fluorescent screen, where they can be observed as luminescent phenomena. A Maltese cross is arranged between the anode and the fluorescent screen, and its shadow can be seen on the screen. The Maltese cross has its own separate lead, so that it can be connected to any desired potential.
The experiment P3.8.3.1 confirms the linear propagation of electrons in a field-free space. In this experiment, the Maltese cross is connected to the anode potential and the shadow of the Maltese cross in the electron beam is compared with the light shadow. We can conclude from the observed coincidence of the shadows that electrons propagate in a straight line. The Maltese cross is then disconnected from any potential. The resulting space charges around the Maltese cross give rise to a repulsive potential, so that the image on the fluorescent screen becomes larger.
In the experiment P3.8.3.2 an axial magnetic field is applied using an electromagnet. The shadow cross turns and shrinks as a function of the coil current. When a suitable relationship between the high voltage and the coil current is set, the cross is focused almost to a point, and becomes larger again when the current is increased further. The explanation for this magnetic focusing may be found in the helical path of the electrons in the magnetic field.

ELECTRICITY
 free charge carriers in a vacuum

PERRIN TUBE

P3.8.4. 1
Hot-cathode emission in a vacuum: determining the polarity and estimating the specific charge of the emitted charge carriers

Hot-cathode emission in a vacuum: determining the polarity and estimating the specific charge of the emitted charge carriers (P3.8.4.1)

Cat. No.	Description	「
555622	Perrin tube	1
555600	Tube stand	1
555604	Pair of Helmholtz coils	1
52170	High-voltage power supply, 10 kV	1
521546	DC Power Supply 0... $16 \mathrm{~V} / 0 . . .5 \mathrm{~A}$	1
540091	Electroscope	1
30011	Saddle base	1
501051	Cable for high voltages, 1.5 m	1
500611	Safety connecting lead, 25 cm , red	1
500621	Safety connecting lead 50 cm , red	2
500622	Safety connecting lead 50 cm , blue	1
500641	Safety connecting lead, 100 cm , red	4
500642	Safety connecting lead, 100 cm , blue	2
500644	Safety connecting lead, 100 cm , black	2

In the Perrin tube, the electrons are accelerated through an anode with pin-hole diaphragm onto a fluorescent screen. Deflection plates are mounted at the opening of the pin-hole diaphragm for horizontal electrostatic deflection of the electron beam. A Faraday's cup, which is set up at an angle of 45° to the electron beam, can be charged by the electrons deflected vertically upward. The charge current can be measured using a separate connection.
In the experiment P3.8.4.1, the current through a pair of Helmholtz coils is set so that the electron beam is incident on the Faraday's cup of the Perrin tube. The Faraday's cup is connected to an electroscope which has been pre-charged with a known polarity. The polarity of the electron charge can be recognized by the direction of electroscope deflection when the Faraday's cup is struck by the electron beam. At the same time, the specific electron charge can be estimated. The following relationship applies:

$$
\frac{e}{m}=\frac{2 U_{\mathrm{A}}}{(B \cdot r)^{2}} \quad U_{\mathrm{A}}: \text { anode voltage }
$$

The bending radius r of the orbit is predetermined by the geometry of the tube. The magnetic field B is calculated from the current / through the Helmholtz coils.

THOMSON TUBE

P3.8.5. 1

Investigating the deflection of electrons in electrical and magnetic fields

P3.8.5.2
Assembling a velocity filter (Wien filter) to determine the specific electron charge

Investigating the deflection of electrons in electrical and magnetic fields (P3.8.5.1)

Cat. No.	Description	
555624	Electron deflection tube	1
555600	Tube stand	1
555604	Pair of Helmholtz coils	1
52170	High-voltage power supply, 10 kV	2
521546	DC Power Supply 0... $16 \mathrm{~V} / 0 . .5 \mathrm{~A}$	1
500611	Safety connecting lead, 25 cm , red	2
500621	Safety connecting lead 50 cm , red	1
500622	Safety connecting lead 50 cm , blue	1
500641	Safety connecting lead, 100 cm , red	2
500642	Safety connecting lead, 100 cm , blue	4
500644	Safety connecting lead, 100 cm , black	2

In the Thomson tube, the electrons pass through a slit behind the anode and fall glancingly on a fluorescent screen placed in the beam path at an angle. A plate capacitor is mounted at the opening of the slit diaphragm which can electrostatically deflect the electron beam vertically. In addition, Helmholtz coils can be used to generate an external magnetic field which can also deflect the electron beam.
The experiment P3.8.5.1 investigates the deflection of electrons in electric and magnetic fields. For different anode voltages U_{A}, the beam path of the electrons is observed when the deflection voltage U_{p} at the plate capacitor is varied. Additionally, the electrons are deflected in the magnetic field of the Helmholtz coils by varying the coil current l. The point at which the electron beam emerges from the fluorescent screen gives us the radius R of the orbit. When we insert the anode voltage in the following equation, we can obtain an experimental value for the specific electron charge

$$
\frac{e}{m}=\frac{2 U_{\mathrm{A}}}{(B \cdot r)^{2}}
$$

whereby the magnetic field B is calculated from the current l.
In the experiment P3.8.5.2, a velocity filter (Wien filter) is constructed using crossed electrical and magnetic fields. Among other things, this configuration permits a more precise determination of the specific electron charge. At a fixed anode voltage U_{A}, the current lof the Helmholtz coils and the deflection voltage U_{P} are set so that the effects of the electric field and the magnetic field just compensate each other. The path of the beam is then virtually linear, and we can say:

$$
\frac{e}{m}=\frac{1}{2 U_{A}} \cdot\left(\frac{U_{P}}{B \cdot d}\right)^{2}
$$

d : plate spacing of the plate capacitor

Assembling a velocity filter (Wien filter) to determine the specific electron charge (P3.8.5.2)

GAS DISCHARGE AT REDUCED PRESSURE

P3.9.2.1
Investigating spontaneous gas discharge in air as a function of pressure

Investigating spontaneous gas discharge in air as a function of pressure (P3.9.2.1)

Glow discharge is a special form of gas discharge. It maintains itself at low pressures with a relatively low current density, and is connected with spectacular

Cat. No.	Description	
554161	Discharge tube, canal rays	1
378752	Rotary-vane vacuum pump D 2.5 E	1
378023	Male ground joint, ST 19/26, DN 16 KF	1
378015	Cross piece, DN 16 KF	1
378050	Clamping ring, DN 10/16 KF	5
378045	Centering ring DN 16 KF	5
378777	Fine vacuum ball valve, DN 16 KF	1
378776	Variable leak valve, DN 16 KF	1
3785131	Pirani vacuum gauge with display	1
378701	Leybold high-vacuum grease	1
52170	High-voltage power supply, 10 kV	1
501051	Cable for high voltages, 1.5 m	2
378764	Exhaust filter AF 8	1^{*}

luminous phenomena. Research into these phenomena provided fundamental insights into the structure of the atom.
In the experiment P3.9.2.1, a cylindrical glass tube is connected to a vacuum pump and slowly evacuated. A high voltage is applied to the electrodes at the end of the glass tube. No discharge occurs at standard pressure. However, when the pressure is reduced to a certain level, current flows, and a luminosity is visible. When the gas pressure is further reduced, multiple phases can be observed: First, a luminous "thread" joins the anode and the cathode. Then, a column of light extends from the anode until it occupies almost the entire space. A glowing layer forms on the cathode. The column gradually becomes shorter and breaks down into multiple layers, while the glowing layer becomes larger. The layering of the luminous zone occurs because after collision excitation, the exciting electrons must traverse an acceleration distance in order to acquire enough energy to re-excite the atoms. The spacing of the layers thus illustrates the free path length.

Differentiator and integrator
For more information on this experiment, go to page 138.
m

P4 ELECTRONICS

P4.1 COMPONENTS AND BASIC CIRCUITS 130
P4.2 OPERATIONAL AMPLIFIER 138
P4.5 DIGITAL ELECTRONICS 139

P4 ELECTRONICS

P4.1 COMPONENTS AND BASIC CIRCUITS

P4.1.1 Current and voltage sources 131
P4.1.2 Special resistors 132
P4.1.3 Diodes 133
P4.1.4 Diode circuits 134
P4.1.5 Transistors 135
P4.1.6 Transistor circuits 136
$\begin{array}{ll}\text { P4.1.7 Optoelectronics } & 137\end{array}$

P4.2 OPERATIONAL AMPLIFIER

P4.2.2 Operational amplifier circuits 138
P4.5 DIGITAL ELECTRONICS
P4.5.1 Simple combinations 139
P4.5.2 Logic circuits 140
P4.5.3 Analog inputs and outputs 141

CURRENT AND VOLTAGE SOURCES

P4.1.1.1
Determining the internal resistance of a battery

P4.1.1.3

Recording the current-voltage characteristics of a solar battery as a function of the irradiance

Recording the current-voltage characteristics of a solar battery as a function of the irradiance (P4.1.1.3)

Cat. No.	Description	㝘	$\stackrel{m}{\dot{\Gamma}}$
57686	Monocell holder STE 2/50	1	
57681	Plug-in board safety socket, 20/10	1	3
68548	Mono cell 1.5 V (IEC R20)	1	
531120	Multimeter LDanalog 20	2	2
53732	Rheostat, 10 ohms	1	
500614	Safety connecting lead, 25 cm , black	5	
57863	Solar module, $2 \mathrm{~V} / 0.3$ A, STE 4/100		1
57790	Potentiometer 220 Ohm, STE 4/50		1
50148	Bridging plugs STE 2/19, set of 10		1
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$		1
45063	Halogen bulb $12 \mathrm{~V} / 100 \mathrm{~W}$, G6.35		1
726890	DC-High Current Power Supply 1... $32 \mathrm{~V} / 0 . .20 \mathrm{~A}$		1
30001	Stand base, V-shaped, large		1
30043	Stand rod, $75 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		1
30101	Leybold multiclamp		1
500621	Safety connecting lead 50 cm , red		2
500622	Safety connecting lead 50 cm , blue		2
500624	Safety connecting lead 50 cm , black		2

Current-voltage characteristics for different illuminance levels (P4.1.1.3)

The voltage U_{0} generated in a voltage source generally differs from the terminal voltage U measured at the connections as soon as a current / is drawn from the voltage source. A resistance R_{i} must therefore exist within the voltage source, across which a part of the generated voltage drops. This resistance is called the internal resistance of the voltage source.
The solar cell is a semiconductor photoelement in which irradiance is converted directly to electrical energy at the p-n junction. Often, multiple solar cells are combined to create a solar battery.
In the experiment P4.1.1.1, a rheostat as an ohmic load is connected to a battery to determine the internal resistance. The terminal voltage U of the battery is measured for different loads, and the voltage values are plotted over the current / through the rheostat. The internal resistance R_{i} is determined using the formula

$$
U=U_{0}-R_{\mathrm{i}} \cdot I
$$

by drawing a best-fit straight line through the measured values. A second diagram illustrates the power

$$
P=U \cdot I
$$

as a function of the load resistance. The power is greatest when the load resistance has the value of the internal resistance R_{i}.
In the experiment P4.1.1.3 the current-voltage characteristics of a solar battery are recorded for different irradiance levels. The irradiance is varied by changing the distance of the light source. The characteristic curves reveal the characteristic behavior. At a low load resistance, the solar battery supplies an approximately constant current. When it exceeds a critical voltage (which depends on the irradiance), the solar battery functions increasingly as a constant-voltage source.

SPECIAL RESISTORS

P4.1.2.1

Recording the current-voltage characteristic of an incandescent lamp

P4.1.2.2
Recording the current-voltage characteristic of a varistor

P4.1.2.3

Measuring the temperaturedependancy of PTC and NTC resistors

P4.1.2.4

Measuring the light-dependancy of photoresistors

Recording the current-voltage characteristic of an incandescent lamp (P4.1.2.1)

Cat. No.	Description	「	N	M ¢ ז -	+ $\underset{\sim}{+}$ - \square
50508	Bulbs, $12 \mathrm{~V} / 3 \mathrm{~W}, \mathrm{E} 10$, set of 10	1			
57906	Lamp holder, E10, top, STE 2/19	1			
524 011USB	Power-CASSY USB	1			
524220	CASSY Lab 2	1			
57800	VDR resistor, STE 2/19		1		
57681	Plug-in board safety socket, 20/10		1	1	
521546	DC Power Supply 0...16 V/0... 5 A		1	1	1
531120	Multimeter LDanalog 20		2	2	1
500621	Safety connecting lead 50 cm , red		2	2	
500622	Safety connecting lead 50 cm , blue		2	2	
500642	Safety connecting lead, 100 cm , blue		1	1	
57806	PTC probe, 30Ω, STE 2/19			1	
57804	NTC probe, $4.7 \mathrm{k} \Omega$, STE 2/19			1	
666767	Hotplate, $1500 \mathrm{~W}, 180 \mathrm{~mm}$ Ø			1	
38234	Thermometer, $-10 \ldots+110^{\circ} \mathrm{C} / 0.2 \mathrm{~K}$			1	
664104	Beaker, DURAN, 400 ml , squat			1	
57802	Photoresistor LDR 05, STE 2/19				1
57905	Lamp holder E10, lateral, STE 2/19				1
505131	Bulbs, $6 \mathrm{~V} / 5 \mathrm{~W}, \mathrm{E} 10$, set of 10				1
46021	Holder for plug-in elements				2
521210	Transformer 6/12 V				1
460310	Optical bench, S1 profile, 1 m				1
460312	Clamp rider with clamp 45/35				2
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair				2
500422	Connecting lead 19 A, 50 cm , blue				1
	additionally required: PC with Windows XP/Vista/7/8/10 ($\times 86$ or $\times 64$)	1			

Many materials do not conduct voltage and current in proportion to one another. Their resistance depends on the current level. In technical applications, elements in which the resistance depends significantly on the temperature, the luminous intensity or another physical quantity are important.
In the experiment P4.1.2.1, CASSY system is used to record the currentvoltage characteristic of an incandescent lamp. As the incandescent filament heats up when current is applied, and its resistance depends on the temperature, different characteristic curves are generated when the current is switched on and off. The characteristic also depends on the rate of increase $\mathrm{d} U / \mathrm{d} t$ of the voltage.
The experiment P4.1.2.2 records the current-voltage characteristic of a varistor (VDR voltage dependent resistor). Its characteristic is non-linear in its operating range. At higher currents, it enters the so-called "rise range", in which the ohmic component of the total resistance increases.
The aim of the experiment P4.1.2.3 is to measure the temperature characteristics of an NTC thermistor resistor and a PTC thermistor resistor. The respective measured values can be described using empirical equations in which only the rated value R_{0}, the reference temperature T_{0} and a material constant appear as parameters.
The subject of the experiment P4.1.2.4 is the characteristic of a light-dependent resistor (LDR). Its resistance varies from approx. 100Ω to approx. $10 \mathrm{M} \Omega$, depending on the brightness. The resistance is measured as a function of the distance from an incandescent lamp which illuminates the light-dependent resistor.

Current-voltage characteristic of the light bulb (P4.1.2.1)

DIODES

P4.1.3.1

Recording the current-voltage characteristics of diodes

P4.1.3.2

Recording the current-voltage characteristics of Zener diodes (Z-diodes)

P4.1.3.3

Recording the current-voltage characteristics of light-emitting diodes (LED)
P4.1.3.4
Recording the current-voltage characteristics of diodes with CASSY

P4.1.3.5

Recording the current-voltage characteristics of Zener diodes (Z-diodes) with CASSY

P4.1.3.6
Recording the current-voltage characteristics of light-emitting diodes
(LED) with CASSY

Recording the current-voltage characteristics of light-emitting diodes (LED) (P4.1.3.3)

Cat. No.	Description	$\begin{aligned} & \dot{\Gamma} \\ & \dot{+} \end{aligned}$	$\stackrel{\stackrel{N}{n}}{\stackrel{y}{\dot{q}}}$	$\stackrel{m}{\stackrel{m}{\dot{q}}}$	$\begin{aligned} & \underset{\sim}{\dot{\sim}} \\ & \underset{\sim}{-} \end{aligned}$	$\begin{aligned} & \stackrel{L}{2} \\ & \underset{\sim}{\dot{4}} \\ & \hline \end{aligned}$	¢
57681	Plug-in board safety socket, 20/10	1	1	1	1	1	1
57851	Diode 1N 4007, STE 2/19	1			1		
57850	Diode, AA 118, germanium, STE 2/19	1			1		
57732	Resistor 100 Ohm, STE 2/19	1	1	1	1	1	1
521487	AC/DC power supply PRO $0 . . .12 \mathrm{~V} / 3 \mathrm{~A}$	1	1	1			
531120	Multimeter LDanalog 20	2	2	2			
500621	Safety connecting lead 50 cm , red	2	2	2	2	2	2
500622	Safety connecting lead 50 cm , blue	2	2	2	2	2	2
500642	Safety connecting lead, 100 cm , blue	1	1	1			
57855	Zener diode 6.2, STE 2/19		1			1	
57854	Zener diode, 9.1 V, STE 2/19		1			1	
57857	Light emitting diode green, STE 2/19			1			1
57847	Light emitting diode, yellow, STE 2/19			1			1
57848	Light emitting diode red, STE 2/19			1			1
57849	Infrared diode, lateral, STE 2/19			1			1
524013	Sensor-CASSY 2				1	1	1
524220	CASSY Lab 2				1	1	1
500644	Safety connecting lead, 100 cm , black				1	1	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)				1	1	1

Recording the current-voltage characteristics of light-emitting diodes (LED) (P4.1.3.3)

Virtually all aspects of electronic circuit technology rely on semiconductor components. The semiconductor diodes are among the simplest of these. They consist of a semiconductor crystal in which an n-conducting zone is adjacent to a p-conducting zone. Capture of the charge carriers, i.e. the electrons in the n -conducting and the "holes" in the p-conducting zones, forms a lowconductivity zone at the junction called the depletion layer. The size of this zone is increased when electrons or holes are removed from the depletion layer by an external electric field with a certain orientation. The direction of this electric field is called the reverse direction. Reversing the electric field drives the respective charge carriers into the depletion layer, allowing current to flow more easily through the diode.
In the experiments P4.1.3.1 and P4.1.3.4, the current-voltage characteristics of an Si -diode (silicon diode) and a Ge-diode (germanium diode) are measured and graphed manually point by point (P4.1.3.1) or with CASSY (P4.1.3.4). The aim is to compare the current in the reverse direction and the threshold voltage as the most important specifications of the two diodes

The objective of the experiments P4.1.3.2 and P4.1.3.5 is to measure the currentvoltage characteristic of a zener or Z-diode. Here, special attention is paid to the breakdown voltage in the reverse direction, as when this voltage level is reached the current rises abruptly. The current is due to charge carriers in the depletion layer, which, when accelerated by the applied voltage, ionize additional atoms of the semiconductor through collision.

The experiments P4.1.3.3 and P4.1.3.6 compare the characteristics of infrared, red, yellow and green light-emitting diodes.

DIODE CIRCUITS

P4.1.4.1
Rectifying AC voltage using diodes

P4.1.4.2

Voltage-limiting with a Z-diode

P4.1.4.3

Testing polarity with light-emitting diodes

P4.1.4.4
Rectifying AC voltage using diodes with CASSY

Rectifying AC voltage using diodes with CASSY (P4.1.4.4)

Cat. No.	Description	F	N	M ¢ + -	\pm + - -
57681	Plug-in board safety socket, 20/10	2	1	1	2
57851	Diode 1N 4007, STE 2/19	4			4
57906	Lamp holder, E10, top, STE 2/19	1	1		1
50508	Bulbs, $12 \mathrm{~V} / 3 \mathrm{~W}$, E10, set of 10	1	1		1
50148	Bridging plugs STE 2/19, set of 10	1			1
521487	AC/DC power supply PRO $0 . . .12 \mathrm{~V} / 3 \mathrm{~A}$	1	1	1	1
575302	Oscilloscope 30 MHz , digital, PT1265	1			
57524	Screened cable, BNC/4 mm	1			
531120	Multimeter LDanalog 20	1	2	2	
500621	Safety connecting lead 50 cm , red	1	3	3	1
500622	Safety connecting lead 50 cm , blue	1	3	3	
500624	Safety connecting lead 50 cm , black	2			3
57855	Zener diode 6.2, STE 2/19		1		
57742	Resistor, 680Ω, STE 2/19		1	1	
57857	Light emitting diode green, STE 2/19			1	
57848	Light emitting diode red, STE 2/19			1	
524005 W	Mobile-CASSY 2 WiFi				1

Diodes, zener diodes (or Z-diodes) and light-emitting diodes are used today in virtually every electronic circuit.
The experiments P4.1.4.1 and P4.1.4.4 explore the function of half-wave and full-wave rectifiers in the rectification of AC voltages. The half-wave rectifier assembled using a single diode blocks the first half-wave of every AC cycle and conducts only the second half-wave (assuming the diode is connected with the corresponding polarity). The full-wave rectifier, assembled using four diodes in a bridge configuration, uses both half-waves of the AC voltage. In experiment P4.1.4.4 the computer-based system CASSY is used to record the voltages.

The experiment P4.1.4.2 demonstrates how a Z-diode can be used to protect against voltage surges. As long as the applied voltage is below the breakdown voltage U_{Z} of the Z-diode, the Z-diode acts as an insulator and the voltage U is unchanged. At voltages above U_{Z}, the current flowing through the Z-diode is so high that U is limited to U_{z}.
The aim of the experiment P4.1.4.3 is to assemble a circuit for testing the polarity of a voltage using a green and a red light emitting diode (LED). The circuit is tested with both DC and AC voltage.

TRANSISTORS

P4.1.5.1

Investigating the diode properties of transistor junctions

P4.1.5.2
Recording the characteristics of a transistor

P4.1.5.3

Recording the characteristics of a field-effect transistor

P4.1.5.4

Recording the characteristics of a transistor with CASSY

P4.1.5.5

Recording the characteristics of a field-effect transistor with CASSY

Recording the characteristics of a transistor (P4.1.5.2)

Cat. No.	Description	¢	?	? $\stackrel{+}{+}$ $\dot{+}$	+	?
57681	Plug-in board safety socket, 20/10	1	2	3	1	1
57867	Transistor BD 137, NPN, e.b., STE 4/50	1	1		1	
57868	Transistor BD 138, PNP, e.b., STE 4/50	1				
57732	Resistor 100 Ohm, STE 2/19	1		1		
521487	AC/DC power supply PRO $0 \ldots . .12 \mathrm{~V} / 3 \mathrm{~A}$	1	1	1		
531120	Multimeter LDanalog 20	2	3	2		
500621	Safety connecting lead 50 cm , red	2	4	3	1	3
500622	Safety connecting lead 50 cm , blue	3	4	3	2	3
57744	Resistor 1 kOhm, STE 2/19		1	1		
57764	Resistor, $47 \mathrm{k} \Omega$, STE 2/19		1	1		
57790	Potentiometer 220 Ohm, STE 4/50		1	1		
57792	Potentiometer, $1 \mathrm{k} \Omega$, STE 4/50		1	1		
50148	Bridging plugs STE 2/19, set of 10		1	2		
578772	Transistor (field effect), J112			1		1
57851	Diode 1N 4007, STE 2/19			1		
521210	Transformer 6/12 V			1		
575302	Oscilloscope 30 MHz , digital, PT1265			1		
57524	Screened cable, BNC/4 mm			2		
57756	Resistor 10 kOhm , STE 2/19				1	1
57831	Capacitor, 0.1μ F, STE 2/19				1	1
524013	Sensor-CASSY 2				1	1
524 011USB	Power-CASSY USB				1	1
524220	CASSY Lab 2				1	1
500611	Safety connecting lead, 25 cm , red				1	
500612	Safety connecting lead, 25 cm , blue				1	
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)				1	1

Transistors are among the most important semiconductor components in electronic circuit technology. We distinguish between bipolar transistors, in which the electrons and holes are both involved in conducting current, and field-effect transistors, in which the current is carried by only one type of charge carriers. The electrodes of a bipolar transistor are called the emitter, the base and the collector. The transistor consists of a total of three n-conducting and p-conducting layers, in the order npn or pnp. The base layer, located in the middle, is so thin that charge carriers originating at one junction can cross to the other junction. In field-effect transistors, the conductivity of the currentcarrying channel is changed using an electrical field, without applying power. The element which generates this field is called the gate. The input electrode of a field-effect transistor is known as the source, and the output electrode is called the drain.
The experiment P4.1.5.1 examines the principle of the bipolar transistor and compares it with a diode. Here, the difference between an npn and a pnp transistor is explicitly investigated.
The experiments P4.1.5.2 and P4.1.5.4 examine the properties of an npn transistor on the basis of its characteristics. This experiment measures the input characteristic, i.e. the base current I_{B} as a function of the base-emitter voltage $U_{B E}$, the output characteristic, i.e. the collector current I_{C} as a function of the collectoremitter voltage $U_{\text {CE }}$ at a constant base current I_{B} and the collector current I_{C} as a function of the base current I_{B} at a constant collector-emitter voltage $U_{\text {CE }}$.
In the experiments P4.1.5.3 and P4.1.5.5, the characteristic of a field-effect transistor, i.e. the drain current I_{D}, is recorded and diagrammed as a function of the voltage $U_{D S}$ between the drain and source at a constant gate voltage U_{G}.

TRANSISTOR CIRCUITS

P4.1.6. 1

The transistor as an amplifier

P4.1.6.2

The transistor as a switch

P4.1.6.3

The transistor as a sine-wave generator (oscillator)

P4.1.6.4

The transistor as a function generator

P4.1.6.5

The field-effect transistor as an amplifier

P4.1.6.6
The field-effect transistor as a switch

The field-effect transistor as an amplifier (P4.1.6.5)

Cat. No.	Description	$\begin{aligned} & \bar{\varrho} \\ & \underset{\square}{2} \end{aligned}$	N	$\begin{aligned} & m \\ & \vdots \\ & \dot{\square} \\ & \hline \end{aligned}$	J	号	
57681	Plug-in board safety socket, 20/10	3	2	3	3	3	2
57867	Transistor BD 137, NPN, e.b., STE 4/50	1	1				
5774	Resistor 1 kOhm, STE 2/19	1	1	2			
57756	Resistor 10 kOhm , STE 2/19	1		3		1	1
57764	Resistor, $47 \mathrm{k} \Omega$, STE 2/19	1		2			1
57780	Variable resistor, $10 \mathrm{k} \Omega$, STE 2/19	1	1				
57782	Variable resistor 47 kOhm , STE 2/19	1					
57838	Capacitor (electrolytic), 47μ F, STE 2/19	1				1	
57839	Capacitor (electrolytic) 100μ F, STE 2/19	1					
57840	Capacitor (electrolytic) 470μ F, STE 2/19	1			1		
50148	Bridging plugs STE 2/19, set of 10	1	1	1	1	1	1
522621	Function generator S 12	1				1	1
521487	AC/DC power supply PRO $0 . . .12 \mathrm{~V} / 3 \mathrm{~A}$	1	1	1	1	1	1
575302	Oscill loscope 30 MHz , digital, PT1265	1		1	1	1	1
57524	Screened cable, BNC/4 mm	2		2	2	2	2
500621	Safety connecting lead 50 cm , red	2	3	2	1	2	3
500622	Safety connecting lead 50 cm , blue	2	3	3	1	2	3
57802	Photoresistor LDR 05, STE 2/19		1				
57806	PTC probe, 30Ω, STE 2/19		1				
57906	Lamp holder, E10, top, STE 2/19		1		2		
50508	Bulbs, $12 \mathrm{~V} / 3 \mathrm{~W}$, E10, set of 10		1				
57913	Toggle switch STE 2/19		1				
57938	Heating element $1000 \mathrm{hm}, 2 \mathrm{~W}$, STE 2/50		1				
531120	Multimeter LDanalog 20		2	1		1	1
57876	Transistor, BC 140, NPN, emitter bottom, STE 4/50			2	2		
57758	Resistor, $15 \mathrm{k} \Omega$, STE 2/19			2	2	1	
57768	Resistor, $100 \mathrm{k} \Omega$, STE 2/19			2		1	
57781	Variable resistor, $4.7 \mathrm{k} \Omega$, STE 2/19			2			
57822	Capacitor, 100 pF, STE 2/19			2			
57823	Capacitor, 220 pF, STE 2/19			2			
57835	Capacitor, 1μ F, STE 2/19			2		2	
57816	Capacitor, 4.7 HF, STE 2/19			2			
57746	Resistor, $1.5 \mathrm{k} \Omega$, STE 2/19				2		
57841	Capacitor (electrolytic), 220μ F, bipolar, STE 2/19				1		

Cat. No.	Description	$\begin{aligned} & \overline{\dot{e}} \\ & \overline{\dot{q}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{x} \\ & \dot{Z} \\ & \hline \end{aligned}$		\pm ¢ ̇̇ ¢	? ¢ İ ¢	
57813	Capacitor, 0.22μ F, STE 2/19				1		
57833	Capacitor, 0.47μ F, STE 2/19				1		
57851	Diode 1N 4007, STE 2/19				2		
505191	Bulbs, $15 \mathrm{~V} / 2 \mathrm{~W}$, E10, set of 5				1		
500624	Safety connecting lead 50 cm , black				1	1	
578772	Transistor (field effect), J112					1	1
57761	Resistor, $33 \mathrm{k} \Omega$, STE 2/19					1	
577657	Resistor, $68 \mathrm{k} \Omega$, STE 2/19					1	
57776	Resistor, $1 \mathrm{M} \Omega$, STE 2/19					1	
57836	Capacitor, $2.2 \mu \mathrm{~F}$, STE 2/19					1	
57792	Potentiometer, $1 \mathrm{k} \Omega$, STE 4/50						1

Transistor circuits are investigated on the basis of a number of examples. These include the basic connections of a transistor as an amplifier, the transistor as a lightdependent or temperature-dependent electronic switch, the Wien bridge oscillator as an example of a sine-wave generator, the astable multivibrator, basic circuits with field-effect transistors as amplifiers as well as the field-effect transistor as a lowfrequency switch.
In the experiment P4.1.6.1 a bipolar transistor is investigated in the common emitter configuration. The adjustment of the operating point and the dependency of the amplification on the emitter resistance are treated.
In the experiment P4.1.6.2 a bipolar transistor is operated as a switch. By means of the high base current, the transistor is operated in saturation and its properties are investigated.
In the experiment P4.1.6.3 a sine-wave generator is set up using a Wien bridge oscillator and a two-stage amplifier. The operating parameters and circuit properties are investigated.
In the experiment P4.1.6.4 an astable multi-vibrator is constructed from two bipolar transistors, and the influences of the components on the frequency and the duty cycle of the vibrations are investigated.
In the experiment P4.1.6.5 a field-effect transistor is investigated as an amplifier in the source configuration and gate configuration, and the properties of the circuits are determined in greater detail.
In experiment P4.1.6.6 a field-effect transistor is operated as a switch. The switchon resistance for various bias voltages and the signal damping during switching are investigated.

OPTOELECTRONICS

P4.1.7. 1

Recording the characteristics of a phototransistor connected as a photodiode

P4.1.7.2

Assembling a purely optical transmission line

Recording the characteristics of a phototransistor connected as a photodiode (P4.1.7.1)

Cat. No.	Description	$\frac{\square}{\grave{\square}}$	$\stackrel{\text { N }}{\substack{\text { N } \\ \vdots \\ \square \\ \hline}}$
57681	Plug-in board safety socket, 20/10	1	3
57861	Phototransistor, lateral, STE 2/19	1	1
57732	Resistor 100 Ohm, STE 2/19	1	
57756	Resistor 10 kOhm, STE 2/19	1	3
57905	Lamp holder E10, lateral, STE 2/19	1	
50508	Bulbs, $12 \mathrm{~V} / 3 \mathrm{~W}$, E10, set of 10	1	
50148	Bridging plugs STE $2 / 19$, set of 10	1	1
521487	AC/DC power supply PRO 0...12 V/3 A	1	
575302	Oscilloscope 30 MHz , digital, PT1265	1	
57524	Screened cable, BNC/4 mm	2	
500621	Safety connecting lead 50 cm , red	2	2
500622	Safety connecting lead 50 cm , blue	2	2
57857	Light emitting diode green, STE 2/19		1
57858	Light emitting diode, red, lateral, STE 2/19		1
57868	Transistor BD 138, PNP, e.b., STE 4/50		1
57885	Operational amplifier, LM 741, STE 4/50		1
57728	Resistor 47 Ohm, STE 2/19		1
57740	Resistor 470 Ohm, STE 2/19		1
57744	Resistor 1 kOhm, STE 2/19		1
57748	Resistor, $2.2 \mathrm{k} \Omega$, STE 2/19		1
57764	Resistor, $47 \mathrm{k} \Omega$, STE 2/19		1
57816	Capacitor, $4.7 \mu \mathrm{~F}$, STE 2/19		2
57839	Capacitor (electrolytic) 100μ F, STE 2/19		1
57840	Capacitor (electrolytic) 470μ F, STE 2/19		1
521536	DC Power Supply $2 \times 0 \ldots 16 \mathrm{~V} / 2 \times 0 \ldots . .5 \mathrm{~A}$		1
522621	Function generator S_{12}		1
57929	Earphone		1
50098	Safety adapter sockets, black, set of 6		1
500614	Safety connecting lead, 25 cm , black		4
500624	Safety connecting lead 50 cm , black		1

Optoelectronics deals with the application of the interactions between light and electrical charge carriers in optical and electronic devices. Optoelectronic arrangements consist of a light-emitting, a light-transmitting and a lightsensitive element. The light beam is controlled electrically.
The subject of the experiment P4.1.7.1 is a phototransistor without base terminal connection used as a photodiode. The current-voltage characteristics are displayed on an oscilloscope for the unilluminated, weakly illuminated and fully illuminated states. It is revealed that the characteristic of the fully illuminated photodiode is comparable with that of a Z-diode, while no conducting-state behavior can be observed in the unilluminated state.
The experiment P4.1.7.2 demonstrates optical transmission of the electrical signals of a function generator to a loudspeaker. The signals modulate the light intensity of an LED by varying the on-state current; the light is transmitted to the base of a phototransistor via a flexible light waveguide. The phototransistor is connected in series to the speaker, so that the signals are transmitted to the loudspeaker.

OPERATIONAL AMPLIFIER CIRCUITS

P4.2.2.1

Unconnected operational amplifier (comparator)

P4.2.2.2
Inverting operational amplifier

P4.2.2.3

Non-inverting operational amplifier

P4.2.2.4

Adder and subtracter
P4.2.2.5
Differentiator and integrator

Unconnected operational amplifier (comparator) (P4.2.2.1)

Cat. No.	Description	̇i N N i	N	m N N + -	+ +	n \sim \vdots \vdots i
57681	Plug-in board safety socket, 20/10	3	2	2	3	2
57885	Operational amplifier, LM 741, STE 4/50	1	1	1	1	1
57756	Resistor 10 kOhm , STE 2/19	1	2	2	2	1
57761	Resistor, $33 \mathrm{k} \Omega$, STE 2/19	2	1		1	
57762	Resistor, $39 \mathrm{k} \Omega$, STE 2/19	1				
57768	Resistor, $100 \mathrm{k} \Omega$, STE 2/19	1	1		4	1
57774	Resistor, $470 \mathrm{k} \Omega$, STE 2/19	1				
57796	Potentiometer, $100 \mathrm{k} \Omega$, STE 4/50	2	1			1
57826	Capacitor, 2.2 nF, STE 2/19	2				1
57828	Capacitor, 10 nF, STE 2/19	1				1
57851	Diode 1N 4007, STE 2/19	1				
50148	Bridging plugs STE 2/19, set of 10	1	1	1	1	1
522621	Function generator S 12	1	1	1		1
521536	DC Power Supply $2 \times 0 \ldots 16 \mathrm{~V} / 2 \times 0 \ldots 5 \mathrm{~A}$	1	1	1	1	1
575302	Oscilloscope 30 MHz , digital, PT1265	1	1	1		1
57524	Screened cable, BNC/4 mm	2	2	2		2
50098	Safety adapter sockets, black, set of 6	1	1	1	1	1
500614	Safety connecting lead, 25 cm , black	3	1	2	1	2
500621	Safety connecting lead 50 cm , red	2	3	3	3	2
500622	Safety connecting lead 50 cm , blue	2	3	3	3	2
500624	Safety connecting lead 50 cm , black	1	1	1	1	1
57744	Resistor 1 kOhm, STE 2/19		1		1	1
57750	Resistor, $3.3 \mathrm{k} \Omega$, STE 2/19		1			
57752	Resistor 4.7 kOhm , STE 2/19		1	1		1
57764	Resistor, $47 \mathrm{k} \Omega$, STE 2/19		2			
57780	Variable resistor, $10 \mathrm{k} \Omega$, STE 2/19		1	1		
531120	Multimeter LDanalog 20		1	1	1	
57732	Resistor 100 Ohm, STE 2/19			1		
57740	Resistor 470 Ohm, STE 2/19			1	1	
57746	Resistor, $1.5 \mathrm{k} \Omega$, STE 2/19			1	1	
57748	Resistor, $2.2 \mathrm{k} \Omega$, STE 2/19			1		

Cat. No.	Description	$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{\sim} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{\dot{Z}} \end{aligned}$	n N N +	$\begin{aligned} & \dot{+} \\ & \dot{\sim} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	1 N N -
57758	Resistor, $15 \mathrm{k} \Omega$, STE 2/19			1		
57738	Resistor, 330Ω, STE 2/19				1	
57760	Resistor, $22 \mathrm{k} \Omega$, STE 2/19				1	
57776	Resistor, $1 \mathrm{M} \Omega$, STE 2/19					1
57815	Capacitor, 1μ F, STE 2/19					1
57816	Capacitor, $4.7 \mu \mathrm{~F}$, STE 2/19					1
57876	Transistor, BC 140, NPN, emitter bottom, STE 4/50					1

The operational amplifier is an important analogue component in modern electronics. Originally designed as a calculating component for analogue computers, it has been introduced into an extremely wide range of applications as an amplifier.
The experiment P4.2.2.1 shows that the unconnected operational amplifier overdrives for even the slightest voltage differential at the inputs. It generates a maximum output signal with a sign corresponding to that of the input-voltage differential.
In the experiments P4.2.2.2 and 4.2.2.3, the output of the operational amplifier is fed back to the inverting and non-inverting inputs via resistor R_{2}. The initial input signal applied via resistor R_{1} is amplified in the inverting operational amplifier by the factor

$$
V=-\frac{R_{2}}{R_{1}}
$$

and in the non-inverting module by the factor

$$
V=\frac{R_{2}}{R_{1}}+1
$$

The experiment P4.2.2.4 demonstrates the addition of multiple input signals and the subtraction of input signals.
The aim of the experiment P4.2.2.5 is to use the operational amplifier as a differentiator and an integrator. For this purpose, a capacitor is connected to the input resp. the feedback loop of the operational amplifier. The output signals of the differentiator are proportional to the change in the input signals, and those of the integrator are proportional to the integral of the input signals.

SIMPLE COMBINATIONS

P4.5.1.1
AND, OR, XOR, and NAND operations with two variables

P4.5.1.2
De Morgan's laws
P4.5.1.3
Operations with three variables

De Morgan's laws (P4.5.1.2)

Digital devices are built on the simple concept of repeated application of just a few basic circuits. Operations using these circuits are governed by the rules of Boolean algebra, sometimes also called "logic algebra" when applied to digital circuit technology.
The experiment P4.5.1.1 introduces all operations with one or two variables used in digital technology. The aim is to verify the laws which apply in Boolean algebra, i.e. those describing commutation, idempotents, absorption and negation.
The experiment P4.5.1.2 demonstrates de Morgan's laws in practical application. $\operatorname{Not}(\operatorname{And}(A, B))=\operatorname{Or}(\operatorname{Not}(A) ; \operatorname{Not}(B))$
The object of the experiment P4.5.1.3 is to verify the associative and distributive laws through experiment when operating three variables.

LOGIC CIRCUITS

P4.5.2.1
AND, NAND, OR and XOR operations
with four variables
P4.5.2.3
Multiplexers and demultiplexers
P4.5.2.4
Adders
P4.5.2.5
Flipflops
P4.5.2.6
Counters
P4.5.2.7
Shift registers

Flipflops (P4.5.2.5)

A combinatorial circuit performs operations such that the output variables are only determined by the input variables, but not by past states. A sequential circuit is additionally able to store the states of individual variables. The output variables also depend on the result of preceding events, which is represented by the switching state of flipflops.
As an approach to the structure of complex combinatorial circuits, the experiment P4.5.2.1 applies the understanding of basic operations previously learned to the logical operation of four inputs.
The experiment P4.5.2.3 demonstrates how a multiplexer is used to switch multiple inputs onto a single output and a demultiplexer distributes the signals of a single input line to multiple output lines.
The experiment P4.5.2.4 investigates discrete and complex adders as key components of a computer.
The aim of the experiment P4.5.2.5 is to study the function of flipflops. It deals with the various demands on the behavior of these fundamental components of sequential circuits, which are required for assembling RS, D and JK flipflops.
The experiment P4.5.2.6 is showing the properties of counters in different configurations.
The experiment P4.5.2.7 investigates the shift register as a working block of a deserializer.

ANALOG INPUTS AND OUTPUTS

P4.5.3. 1
DA and AD Converter

DA and AD Converter (P4.5.3.1)

Interfacing digital circuitry to the often analog world requires the use of A/D and D/A converters. In this process, continuous signals are converted into discrete, digital signals so that they can be processed further afterwards. Transfer characteristics are investigated.
The experiment P4.5.3.1 shows the function of analog to digital conversion and digital to analog conversion.

P5.5.1. 1

Determining the radiant flux density and the luminous intensity of a halogen lamp

For more information on this experiment, go to page 170

P5 OPTICS

P5.1 GEOMETRICAL OPTICS 145
P5.2 DISPERSION AND CHROMATICS 149
P5.3 WAVE OPTICS 153
P5.4 POLARIZATION 164
P5.5 LIGHT INTENSITY 170
P5.6 VELOCITY OF LIGHT 173
P5.7 SPECTROMETER 177
P5.8 PHOTONICS 180

P5 OPTICS

P5.1 GEOMETRICAL OPTICS
P5.1.1 Reflection, refraction 145
P5.1.2 Laws of imaging 146
P5.1.3 Image distortion 147
P5.1.4 Optical instruments 148
P5.2 DISPERSION AND CHROMATICS
P5.2.1 Refractive index and dispersion 149
P5.2.3 Color mixing 150
P5.2.4 Absorption spectra 151
P5.2.5 Reflection spectra 152
P5.3 WAVE OPTICS
P5.3.1 Diffraction 153-155
P5.3.2 Two-beam interference 156
P5.3.3 Newton's Rings 157
P5.3.4 Michelson interferometer 158-159
P5.3.5 Other types of interferometers 160-161
P5.3.6 White-light Reflection Holography 162
P5.3.7 Transmission Holography 163
P5.4 POLARIZATION
P5.4.1 Basic experiments 164
P5.4.2 Birefringence 165
P5.4.3 Optical activity, polarimetry 166
P5.4.4 Kerr effect 167
P5.4.5 Pockels effect 168
P5.4.6 Faraday effect 169

REFLECTION, REFRACTION

P5.1.1.1

Reflection of light at straight and curved mirrors

P5.1.1.2

Refraction of light at straight surfaces and investigation of ray paths in prisms and lenses

Reflection of light at straight and curved mirrors (P5.1.1.1)

Cat. No.	Description	¢
46352	Optical disc	1
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$	1
450681	Halogen bulb $12 \mathrm{~V} / 50 \mathrm{~W}$, G6. 35	1
726890	DC-High Current Power Supply 1... 32 V/0... 20 A	1
46351	Diaphragm with 5 slits	1
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$	1
460310	Optical bench, S1 profile, 1 m	1
460311	Clamp rider with clamp 45/65	2
4603112	Clamp rider with clamp 75/65	1
30040	Stand rod, $10 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
500624	Safety connecting lead 50 cm , black	2

Refraction of light at straight surfaces and investigation of ray paths in prisms and lenses (P5.1.1.2)

Frequently, the propagation of light can be adequately described simply by the ray path. Examples of this are the ray paths of light in mirrors, in lenses and in prisms using sectional models.
The experiment P5.1.1.1 examines how a mirror image is formed by reflection at a plane mirror and demonstrates the reversibility of the ray path. The law of reflection is experimentally validated:

$$
\begin{aligned}
& \alpha=\beta \\
& \alpha: \text { angle of incidence, } \beta \text { : angle of reflection }
\end{aligned}
$$

Further experiment objectives deal with the reflection of a parallel light beam in the focal point of a concave mirror, the existence of a virtual focal point for reflection in a convex mirror, the relationship between focal length and bending radius of the curved mirror and the creation of real and virtual images for reflection at a curved mirror
The experiment P5.1.1.2 deals with the change of direction when light passes from one medium into another. The law of refraction discovered by W. Snell is quantitatively verified:

$$
\frac{\sin \alpha}{\sin \beta}=\frac{n_{2}}{n_{1}}
$$

α : angle of incidence, β : angle of refraction,
n_{1} : refractive index of medium 1 (here air),
n_{2} : refractive index of medium 2 (here glass)
This experiment topic also studies total reflection at the transition from a medium with a greater refractive index to one with a lesser refractive index, the concentration of a parallel light beam at the focal point of a collecting lens, the existence of a virtual focal point when a parallel light beam passes through a dispersing lens, the creation of real and virtual images when imaging with lenses and the ray path through a prism.

LAWS OF IMAGING

P5.1.2. 1
Determining the focal lengths at collecting and dispersing lenses using collimated light

P5.1.2.2

Determining the focal lengths at collecting lenses through autocollimation

P5.1.2.3

Determining the focal lengths at collecting lenses using Bessel's method

P5.1.2.4
Verifying the imaging laws with a collecting lens

Verifying the imaging laws with a collecting lens (P5.1.2.4)

Cat. No.	Description	춫	N	
45060	Lamp housing with cable	1	1	1
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}$, E14, set of 2	1	1	1
46020	Condenser with diaphragm holder	1	1	1
521210	Transformer 6/12 V	1	1	1
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$	1		1
46003	Lens in frame, $f=100 \mathrm{~mm}$	1		1
46004	Lens in frame, $\mathrm{f}=200 \mathrm{~mm}$	1		
46006	Lens in frame, $f=-100 \mathrm{~mm}$	1		
44153	Screen, translucent	1		1
460310	Optical bench, S1 profile, 1 m	1	1	1
460311	Clamp rider with clamp 45/65	2	2	2
460312	Clamp rider with clamp 45/35	1	1	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	1	1
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$		1	
46009	Lens in frame, $\mathrm{f}=300 \mathrm{~mm}$		1	
46166	Objects for investigating images, pair		1	1
46028	Plane mirror, $14 \mathrm{~cm} \times 9 \mathrm{~cm}$, with ball joint		1	

The focal lengths of lenses are determined by a variety of means. The basis for these are the laws of imaging.
In the experiment P5.1.2.1, an observation screen is set up parallel to the optical axis so that the path of a parallel light beam can be observed on the screen after passing through a collecting or dispersing lens. The focal length is determined directly as the distance between the lens and the focal point
In autocollimation, experiment P5.1.2.2 a parallel light beam is reflected by a mirror behind a lens so that the image of an object is viewed right next to that object. The distance d between the object and the lens is varied until the object and its image are exactly the same size. At this point, the focal length is

$$
f=d
$$

In the Bessel method, experiment P5.1.2.3, the object and the observation screen are set up at a fixed overall distance s apart. Between these points there are two lens positions x_{1} and x_{2} at which a sharply focused image of the object is produced on the observation screen. From the lens laws, we can derive the following relationship for the focal length

$$
f=\frac{1}{4} \cdot\left(s-\frac{\left(x_{1}-x_{2}\right)^{2}}{s}\right)
$$

In the experiment P5.1.2.4, the object height G, the object width g, the image height B and the image width b are measured directly for a collecting lens in order to confirm the lens laws. The focal length can be calculated using the formula:

$$
f=\frac{g \cdot b}{g+b}
$$

IMAGE DISTORTION

P5.1.3.1
Spherical aberration in lens imaging

P5.1.3.2

Astigmatism and curvature of image field in lens imaging

P5.1.3.3

Lens imaging distortions (barrel and cushion) and coma

P5.1.3.4
Chromatic aberration in lens imaging

Spherical aberration in lens imaging (P5.1.3.1)

Cat. No.	Description	$\stackrel{\square}{\text { ¢ }}$	N ¢ ñ	m	$\stackrel{+}{\text { m }}$
45060	Lamp housing with cable	1	1	1	1
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}, \mathrm{E} 14$, set of 2	1	1	1	1
46020	Condenser with diaphragm holder	1	1	1	1
521210	Transformer 6/12 V	1	1	1	1
46161	Diaphragms for spherical aberration, pair	1			
46166	Objects for investigating images, pair	1	1	1	
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$	1	1	1	1
46026	Iris diaphragm	1	1		1
44153	Screen, translucent	1	1	1	1
460310	Optical bench, S1 profile, 1 m	1	1	1	1
460311	Clamp rider with clamp 45/65	2	2	2	2
460312	Clamp rider with clamp 45/35	2	2	2	2
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$			1	
46795	Colour filter set, primary				1

A spherical lens only images a point into an ideal point when the imaging ray traces intersect the optical axis at small angles, and the angle of incidence and traces intersect the optical axis at small angles, and the angle of incidence and
angle of refraction are also small when the ray passes through the lens. As this condition is only fulfilled to a limited extent in practice, optical aberrations like coma are unavoidable.
The experiments P5.1.3.1 and P5.1.3.2 deal with aberrations of image sharpness. In a ray path parallel to the optical axis, paraxial rays are united at a different distance from abaxial rays. This effect, known as "spherical aberration", is particularly apparent in lenses with sharp curvatures. Astigmatism and curvature of field may be observed when imaging long objects with narrow light beams. The focal plane is in reality a curved surface, so that the image on the observation screen becomes increasingly fuzzy toward the edges when the middle is sharply focused. Astigmatism is the phenomenon whereby a tightly restricted light beam does not produce a point-type image, but rather two lines which are perpendicular to each other with a finite spacing with respect to the axis.
The experiment P5.1.3.3 explores aberrations of scale. Blocking light rays in front of the lens causes a barrel-shaped distortion, i. e. a reduction in the imaging scale with increasing object size. Screening behind the lens results in cushion-type aberrations. "Coma" is the term for one-sided, plume-like or bloblike distortion of the image when imaged by a beam of light passing through the lens at an oblique angle.
The experiment P5.1.3.4 examines chromatic aberrations. These are caused by a change in the refractive index with the wavelength, and are thus unavoidable when not working with non-monochromatic light.

\square
\square

OPTICAL INSTRUMENTS

P5.1.4.1
Magnifier and microscope
P5.1.4.2
Kepler's telescope and Galileo's telescope

Magnifier and microscope (P5.1.4.1)

Cat. No.	Description	「	N
45060	Lamp housing with cable	1	
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}, \mathrm{E} 14$, set of 2	1	
46020	Condenser with diaphragm holder	1	
521210	Transformer 6/12 V	1	
46022	Holder with spring clips	1	
311091	Glass scale 50 mm	1	
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$	1	1
46003	Lens in frame, $\mathrm{f}=100 \mathrm{~mm}$	1	1
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$	1	
46004	Lens in frame, $\mathrm{f}=200 \mathrm{~mm}$	1	1
460310	Optical bench, S1 profile, 1 m	1	1
460311	Clamp rider with clamp 45/65	2	
460312	Clamp rider with clamp 45/35	4	2
44153	Screen, translucent	1	
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	
46005	Lens in frame, $\mathrm{f}=500 \mathrm{~mm}$		1
46006	Lens in frame, $f=-100 \mathrm{~mm}$		1
31122	Vertical rule		1
30011	Saddle base		1

Ray path through the Kepler telescope (P5.1.4.2)

The magnifier, the microscope and the telescope are introduced as optical instruments which primarily increase the angle of vision. The design principle of each of these instruments is reproduced on the optical bench. For quantitative conclusions, the common definition of magnification is used:

$$
\begin{aligned}
& V=\frac{\tan \psi}{\tan \varphi} \\
& \psi: \text { angle of vision with instrument } \\
& \varphi: \text { angle of vision without instrument }
\end{aligned}
$$

In the experiment P5.1.4.1, small objects are observed from a short distance. First, a collecting lens is used as a magnifier. Then, a microscope in its simplest form is assembled using two collecting lenses. The first lens, the objective, produces a real, magnified and inverted intermediate image. The second lens, the ocular (or eyepiece) is used as a magnifier to view this intermediate image. For the total magnification of the microscope, the following applies:

$$
\begin{aligned}
& V_{\mathrm{M}}=V_{\mathrm{ob}} \cdot V_{\mathrm{oc}} \\
& V_{\text {ob }}: \text { imaging scale of objective } \\
& V_{\text {oc }}: \text { imaging scale of ocular }
\end{aligned}
$$

Here, $V_{\text {oc }}$ corresponds to the magnification of the magnifier.

$$
\begin{aligned}
& V_{o c}=\frac{s_{0}}{f_{o c}} \\
& s_{0}: \text { clear field of vision } \\
& f_{o c}: \text { focal length of ocular }
\end{aligned}
$$

The aim of the experiment P5.1.4.2 is to observe distant objects using a telescope. The objective and the ocular of a telescope are arranged so that the back focal point of the objective coincides with the front focal point of the ocular. A distinction is made between the Galilean telescope, which uses a dispersing lens as an ocular and produces an erect image, and the Kepler telescope, which produces an inverted image because its ocular is a collecting lens. In both cases, the total magnification can be determined as:

$$
\begin{aligned}
& V_{\mathrm{T}}=\frac{f_{\mathrm{ob}}}{\left|f_{\mathrm{oc}}\right|} \\
& f_{\mathrm{ob}}: \text { focal length of objective } \\
& f_{\mathrm{oc}}: \text { focal length of ocular }
\end{aligned}
$$

REFRACTIVE INDEX AND DISPERSION

P5.2.1. 1
Determining the refractive index and dispersion of flint glass and crown glass

P5.2.1.2
Determining the refractive index and dispersion of liquids

Determining the refractive index and dispersion of liquids (P5.2.1.2)

Cat. No.	Description	「	N
46522	Prism, crown glass	1	
46532	Prism, flint glass	1	
46025	Prism table	1	1
46022	Holder with spring clips	1	1
45060	Lamp housing with cable	1	1
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}, \mathrm{E} 14$, set of 2	1	1
46020	Condenser with diaphragm holder	1	1
521210	Transformer 6/12 V	1	1
46803	Light filter, red	1	1
46807	Light filter, yellow-green	1	1
46811	Light filter, blue with violet	1	1
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$	1	1
460310	Optical bench, S1 profile, 1 m	1	1
460311	Clamp rider with clamp 45/65	1	1
460312	Clamp rider with clamp 45/35	3	3
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	1
46552	Hollow prism		1
665002	Funnel		1
6752100	Toluene, 250 ml		1
6750410	Turpentine oil, rectified, 250 ml		1
6754760	Cinnamic ethylester, 100 ml		1

Dispersion is the term for the fact that the refractive index n is different for different-colored light. Often, dispersion also refers to the quantity $d n / d \lambda$, i.e. the quotient of the change in the refractive index $d n$ and the change in the wavelength $d \lambda$.
In the experiment P5.2.1.1, the angle of minimum deviation ϑ is determined for a flint glass and a crown glass prism at the same refracting angle ε. This enables determination of the refractive index of the respective prism material according to the formula

$$
n=\frac{\sin \frac{1}{2}(\varepsilon+\varphi)}{\sin \frac{1}{2} \varepsilon}
$$

The measurement is conducted for several different wavelengths, so that the dispersion can also be quantitatively measured.
In the experiment P5.2.1.2, an analogous setup is used to investigate dispersion in liquids. Toluol, turpentine oil, cinnamic ether, alcohol and water are each filled into a hollow prism in turn, and the differences in the refractive index and dispersion are observed.

Ray path through a prism (P5.2.1.1)

OPTICS
DISPERSION AND CHROMATICS

COLOR MIXING

P5.2.3.2
Demonstration of additive
color mixing
P5.2.3.3
Demonstration of subtractive color mixing

Demonstration of additive color mixing (P5.2.3.2)

Cat. No.	Description	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	
459098	Triple LED lamp	1	
459095	Plug-in power supply USB 5 V DC (A socket)	1	1
459096	Cable USB (USB Type A - Mini-USB)	1	1
46003	Lens in frame, f=100 mm	1	1
46022	Holder with spring clips	1	1
688045	Sliding diaphragms, set of 6	1	
46795	Colour filter set, primary	1	1
46796	Colour filter set, secondary	1	1
46797	Triple colour filter	1	
44153	Screen, translucent	1	1
460310	Optical bench, S1 profile, 1 m	1	1
460311	Clamp rider with clamp 45/65	1	1
460312	Clamp rider with clamp 45/35	2	3
460313	Clamp rider with fixing column	1	1
459094	LED lamp		1
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$		1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$		1

The colour recognition of the human eye is determined by three types of light receptor cones in the retina. Comparison of the different colours (wavelength ranges) of the visible spectrum with the sensitivity of the different types of cone reveals division into the primary colours: red, green and blue. Combinations of two primary colours result in the secondary colours: cyan, magenta and yellow. Therefore secondary colour filters absorb the third primary colour. A combination of all three primary colours results in white.
In experiment P5.2.3.2 several colour filters (red, green, blue) are placed next to each other in front of a lamp with 3 light sources and in the image on a screen the overlap of these primary colours show additive colour mixing.
In experiment P5.2.3.3 subtractive colour mixing is shown by placing colour filters (yellow, magenta, cyan) partially overlapping in the light beam of a lamp.

ABSORPTION SPECTRA

P5.2.4.3
Absorption spectra of tinted glass samples - Recording and evaluating with a spectrophotometer

P5.2.4.4
Absorption and fluorescence spectra of coloured liquids - Recording and evaluating with a spectrophotometer

P5.2.4.5
Absorption spectra of PMMA optical waveguide - Recording and evaluating with a spectrophotometer

Absorption spectra of tinted glass samples - Recording and evaluating with a spectrophotometer (P5.2.4.3)

Cat. No.	Description	n + N ñ	$\begin{aligned} & \dot{+} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	
46796	Colour filter set, secondary	1		
46801	Light filter, dark red	1		
46809	Light filter, blue-green	1		
46811	Light filter, blue with violet	1	1	
46022	Holder with spring clips	1	1	
45060	Lamp housing with cable	1	1	
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}, \mathrm{E} 14$, set of 2	1	1	
46020	Condenser with diaphragm holder	1	1	
521210	Transformer 6/12 V	1	1	
467251	Compact spectrometer, physics (spectral photometer)	1	1	1
460251	Fibre holder	1	1	1
460310	Optical bench, S1 profile, 1 m	1	1	
460311	Clamp rider with clamp 45/65	3	4	
47714	Plate glass cell (cuvette), $50 \times 50 \times 20 \mathrm{~mm}$		1	
46025	Prism table		1	
30011	Saddle base		1	2
30040	Stand rod, $10 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		1	
30101	Leybold multiclamp		1	
6045672	Double microspatula, steel, 150 mm		1	
6720110	Fluoresceine, 25 g		1	
45117	Lamp socket, E27, Euro plug			1
505302	Halogen Bulb 230 V/ 46 W, E27			1
57944	Light waveguide, set of 2			1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1	1

The colors we perceive when looking through colored glass or liquids are created by the transmitted component of the spectral colors.
In the experiment P5.2.4.3, the light from an incandescent light bulb passing through coloured pieces of glass is recorded with a spectrometer and compared with the continuous spectrum of the lamp light. The original, continuous spectrum with the continuum of spectral colors disappears. All that remains is a band with the colour components of the filter. The transmission coefficient and the optical density of the coloured pieces of glass are calculated.
In the experiment P5.2.4.4, the light from an incandescent light bulb passing through a coloured liquid is recorded using a spectrometer. The fluorescence of the coloured liquid is recorded under a right angle. A blue filter is used to clearly separate fluorescence and light scattering. Both, absorption and fluorescence spectra are compared with the continuous spectrum of the lamp light.
In the experiment P5.2.4.5, light passing through an optical fibre is recorded by a compact spectrometer. The higher order overtones of molecular oscillations create spectral ranges of high absorption, leaving ranges of high transmission in between, the so called "optical windows".

REFLECTION SPECTRA

P5.2.5.1
Reflection spectra of different materials - Recording and evaluating with a spectrophotometer

Reflection spectra of different materials - Recording and evaluating with a spectrophotometer (P5.2.5.1)

Cat. No.	Description	¢
56706	Conductors/insulators, set of 6	1
46022	Holder with spring clips	1
45060	Lamp housing with cable	1
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}, \mathrm{E} 14$, set of 2	1
46020	Condenser with diaphragm holder	1
521210	Transformer 6/12 V	1
467251	Compact spectrometer, physics (spectral photometer)	1
460251	Fibre holder	1
460310	Optical bench, S1 profile, 1 m	1
460311	Clamp rider with clamp 45/65	3
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

The colors we perceive of opaque objects are induced by the reflected com-ponent of the spectral colors.
In the experiment P5.2.5.1, the light from an incandescent light bulb reflected by different materials is recorded using a spectrometer. By comparison with the reflection from a sheet of white paper (scattered light), the reflection coefficient can be calculated.

[^10]

DIFFRACTION

P5.3.1.1

Diffraction at a slit, at a post and at a circular iris diaphragm

P5.3.1.2

Diffraction at a double slit and multiple slits

P5.3.1.3
Diffraction at one- and
two-dimensional gratings

Diffraction at a double slit and multiple slits (P5.3.1.2)

Cat. No.	Description	「		? \cdots \cdots n
46991	Diaphragm with 3 single slits	1		
46996	Diaphragm with 3 diffraction holes	1		
46997	Diaphragm with 3 diffraction objects	1		
46022	Holder with spring clips	1	1	1
471830	He-Ne Laser, linearly polarised	1	1	1
46001	Lens in frame, $\mathrm{f}=5 \mathrm{~mm}$	1	1	1
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$	1	1	1
46032	Optical bench with standardised profile, 1 m	1	1	1
460370	Optics rider, 60/34	4	4	4
44153	Screen, translucent	1	1	1
30011	Saddle base	1	1	1
46984	Diaphragm with 3 double slits of different slit widths		1	
46985	Diaphragm with 4 double slits of different slit spacing		1	
46986	Diaphragm with 5 multiple slits with different slit numbers		1	
46987	Diaphragm with 3 gratings			1
46988	Diaphragm with 2 wire-mesh gratings			1

Interference pattern of experiment on the screen (P5.3.1.2)

The experiment P5.3.1.1 looks at the intensity minima for diffraction at a slit. Their angles ϑ_{k} with respect to the optical axis for a slit of the width b is given by the relationship

$$
\begin{aligned}
& \sin \varphi_{k}=k \cdot \frac{\lambda}{b}(k=1 ; 2 ; 3 ; \ldots) \\
& \lambda: \text { wavelength of the light }
\end{aligned}
$$

In accordance with Babinet's theorem, diffraction at a post produces similar results. In the case of diffraction at a circular iris diaphragm with the radius r, concentric diffraction rings may be observed; their intensity minima can be found at the angles ϑ_{k} using the relationship

$$
\sin \varphi_{k}=k \cdot \frac{\lambda}{r} \quad(k=0.610 ; 1.116 ; 1.619 ; \ldots)
$$

The experiment P5.3.1.2 explores diffraction at a double slit. The constructive interference of secondary waves from the first slit with secondary waves from the second slit produces intensity maxima; at a given distance d between slit midpoints, the angles ϑ_{n} of these maxima are specified by

$$
\sin \varphi_{n}=n \cdot \frac{\lambda}{d} \quad(n=0 ; 1 ; 2 ; \ldots)
$$

The intensities of the various maxima are not constant, as the effect of diffraction at a single slit is superimposed on the diffraction at a double slit. In the case of diffraction at more than two slits with equal spacings d, the positions of the interference maxima remain the same. Between any two maxima, we can also detect $N-2$ secondary maxima; their intensities decrease for a fixed slit width b and increasing number of slits N.
The experiment P5.3.1.3 investigates diffraction at a line grating and a crossed grating. We can consider the crossed grating as consisting of two line gratings arranged at right angles to each other. The diffraction maxima are points at the "nodes" of a straight, square matrix pattern.

OPTICS
WAVE OPTICS

DIFFRACTION

P5.3.1.4
Diffraction at a single slit -
Recording and evaluating with CASSY

P5.3.1.5

Diffraction at a double slit and multiple slits - Recording and evaluating with CASSY

Diffraction at a single slit - Recording and evaluating with CASSY (P5.3.1.4)

Cat. No.	Description	+	?
46014	Adjustable slit	1	
471830	He-Ne Laser, linearly polarised	1	1
46022	Holder with spring clips	1	2
46001	Lens in frame, $\mathrm{f}=5 \mathrm{~mm}$	1	1
46002	Lens in frame, f=50 mm	1	1
46033	Optical bench with standardised profile, 2 m	1	1
460374	Optics rider, 90/50	4	4
460383	Sliding rider, 90/50	1	1
524005 W	Mobile-CASSY 2 WiFi	1	1
524220	CASSY Lab 2	1	1
524444	Lux Sensor M	1	1
524082	Rotary motion sensor S	1	1
30107	Simple bench clamp	1	1
30948	Fishing line	1	1
34263	Weight 50 g	1	1
46984	Diaphragm with 3 double slits of different slit widths		1
46985	Diaphragm with 4 double slits of different slit spacing		1
46986	Diaphragm with 5 multiple slits with different slit numbers		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1

A lux sensor is used to measure the diffraction intensities; this sensor can be moved perpendicularly to the optical axis on the optical bench, and its lateral position can be measured using a displacement transducer.
The experiment P5.3.1.4 investigates diffraction at slit of variable width. The recorded measured values for the intensity I are compared with the results of a model calculation for small diffraction angles ϑ which uses the slit width b as a parameter:

$$
\begin{aligned}
& I \propto\left(\frac{\sin \left(\frac{\pi b}{\lambda} \varphi\right)}{\frac{\pi b}{\lambda} \varphi}\right)^{2} \text { where } \varphi=\frac{s}{L} \\
& \lambda: \text { wavelength of the light } \\
& s: \text { lateral shift of photoelement } \\
& L: \text { distance between object and photoelement }
\end{aligned}
$$

The experiment P5.3.1.5 explores diffraction at multiple slits. In the model calculation performed for comparison purposes, the slit width band the slit spacing d are both used as parameters.

$$
I \propto\left(\frac{\sin \left(\frac{\pi b}{\lambda} \varphi\right)}{\frac{\pi b}{\lambda} \varphi}\right)^{2} \cdot\left(\frac{\sin \left(\frac{N \pi d}{\lambda} \varphi\right)}{\sin \left(\frac{\pi d}{\lambda} \varphi\right)}\right)^{2}
$$

[^11]

DIFFRACTION

P5.3.1.9
Investigation of the spatial coherence of an extended light source

Investigation of the spatial coherence of an extended light source (P5.3.1.9)

Coherence is the property of waves that enables them to exhibit stationary interference patterns. The spatial coherence of a light source can be examined in a Young's double-slit interferometer. A light source illuminates a double slit with slit width b and distance g. If the partial beams emitted by the light source are coherent at the position of the two slits an interference pattern can be observed after the double slit. The condition for coherent illumination of the two slits is

$$
\Delta s=a \cdot \sin \alpha=\frac{1}{2} \cdot \frac{a}{L}(g+b)<\frac{\lambda}{2}
$$

The experiment P5.3.1.9 explores the condition for spatial coherence. The light source is a single slit of variable width illuminated by a Hg spectral lamp. Combined with a filter this results in a monochromatic light source with variable width a. At a distance L double slits of different distances of the slits g (and fixed slit width b) are illuminated. For each distance g the width a of the adjustable single slit is determined where the interference pattern after the double slit vanishes. Then, the coherence condition is no longer fulfilled.

TWO-BEAM INTERFERENCE

P5.3.2.1

Interference at a Fresnel's mirror with an He-Ne laser

P5.3.2.2

Lloyd's mirror experiment with an He-Ne laser

P5.3.2.3
Interference at Fresnel's biprism with an He-Ne laser

Interference at a Fresnel's mirror with an He-Ne laser (P5.3.2.1)

Cat. No.	Description		m
471830	He-Ne Laser, linearly polarised	1	1
47105	Fresnel's mirror, adjustable	1	
46001	Lens in frame, $\mathrm{f}=5 \mathrm{~mm}$	1	1
46004	Lens in frame, $\mathrm{f}=200 \mathrm{~mm}$	1	1
46032	Optical bench with standardised profile, 1 m	1	1
460370	Optics rider, 60/34	3	3
460373	Optics rider, 60/50	1	1
44153	Screen, translucent	1	1
30011	Saddle base	1	1
31153	Vernier callipers	1	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	1
47109	Fresnel biprism		1
46025	Prism table		1

In these experiments, two coherent light sources are generated by recreating three experiments of great historical significance. In each of these experiments, the respective wavelength λ of the light used is determined by the distance d between two interference lines and the distance a of the (virtual) light sources. At a sufficiently great distance L between the (virtual) light sources and the projection screen, the relationship

$$
\lambda=a \cdot \frac{d}{L}
$$

obtains. The determination of the quantity a depends on the respective experiment setup.
In 1821, A. Fresnel used two mirrors inclined with respect to one another to create two virtual light sources positioned close together, which, being coherent, interfered with each other - P5.3.2.1.
In 1839, H. Lloyd demonstrated that a second, virtual light source coherent with the first can be created by reflection in a mirror. He observed interference phenomena between direct and reflected light - P5.3.2.2.
Coherent light sources can also be produced using a Fresnel biprism, first demonstrated in 1826 (P5.3.2.3). Refraction in both halves of the prism results in two virtual images, which are closer together the smaller the prism angle is.

Fresnel mirror - Lloyd mirror - Biprism (P5.3.2.1-3)

NEWTON'S RINGS

P5.3.3.1
Newton's Rings in transmitted monochromatic light

P5.3.3.2
Newton's rings in transmitted and reflected white light

Newton's rings in transmitted and reflected white light (P5.3.3.2)

Cat. No.	Description	¢	N
471111	Glass plates for Newton's rings	1	1
46003	Lens in frame, $f=100 \mathrm{~mm}$	2	
46026	Iris diaphragm	1	
46022	Holder with spring clips	1	
46032	Optical bench with standardised profile, 1 m	1	1
460370	Optics rider, 60/34	6	5
451111	Spectral lamp, Na	1	
451062	Spectral lamp, Hg 100	1	
45116	Housing for spectral lamps	1	
45130	Universal choke, $230 \mathrm{~V}, 50 \mathrm{~Hz}$	1	
46830	Light filter, yellow	1	
46831	Light filter, green	1	
46832	Light filter, blue	1	
44153	Screen, translucent	1	
30011	Saddle base	1	
46004	Lens in frame, $\mathrm{f}=200 \mathrm{~mm}$		2
460373	Optics rider, 60/50		1
460380	Cantilever arm		1
47188	Beam splitter		2
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$		1
45063	Halogen bulb $12 \mathrm{~V} / 100 \mathrm{~W}$, G6.35		1
726890	DC-High Current Power Supply 1...32 V/0... 20 A		1
500624	Safety connecting lead 50 cm , black		2

Newton's rings are produced using an arrangement in which a convex lens with an extremely slight curvature is touching a glass plate, so that an air wedge with a spherically curved boundary surface is formed. When this configuration is illuminated with a vertically incident, parallel light beam, concentric interference rings (the Newton's rings) are formed around the point of contact between the two glass surfaces both in reflection and in transmitted light. For the path difference of the interfering partial beams, the thickness d of the air wedge is the defining factor; this distance is not in a linear relation to the distance r from the point of contact:

$$
\begin{aligned}
& d=\frac{r^{2}}{2 R} \\
& R: \text { bending radius of convex lens }
\end{aligned}
$$

In the experiment P5.3.3.1, the Newton's rings are investigated with monochromatic, transmitted light. At a known wavelength λ, the bending radius R is determined from the radii r_{n} of the interference rings. Here, the relationship for constructive interference is:

$$
d=n \cdot \frac{\lambda}{2} \text { where } n=0,1,2, \ldots
$$

Thus, for the radii of the bright interference rings, we can say:

$$
r_{n}^{2}=n \cdot R \cdot \lambda \text { where } n=0,1,2, \ldots
$$

In the experiment P5.3.3.2, the Newton's rings are studied both in reflection and in transmitted light. As the partial beams in the air wedge are shifted in phase by $\lambda / 2$ for each reflection at the glass surfaces, the interference conditions for reflection and transmitted light are complementary. The radii r_{n} of the bright interference lines calculated for transmitted light using the equations above correspond precisely to the radii of the dark rings in reflection. In particular, the center of the Newton's rings is bright in transmitted light and dark in reflection. As white light is used, the interference rings are bordered by colored fringes.

MICHELSON INTERFEROMETER

P5.3.4. 1

Setting up a Michelson interferometer on the laser optics base plate

P5.3.4.2
Determining the wavelength of the light of an He-Ne laser using a Michelson interferometer

Setting up a Michelson interferometer on the laser optics base plate (P5.3.4.1)

Cat. No.	Description		N + N n
47340	Laser optics base plate	1	1
471830	He-Ne Laser, linearly polarised	1	1
473411	Laser mount	1	1
473421	Optics base	4	5
473432	Beam divider, 50%	1	1
473431	Holder for beam divider	1	1
473461	Planar mirror with fine adjustment	2	2
473471	Spherical lens, $f=2.7 \mathrm{~mm}$	1	1
44153	Screen, translucent	1	1
30011	Saddle base	1	1
31102	Metal rule, 1 m	1	1
47348	Fine adjustment mechanism		1

Setup of the Michelson interferometer (P5.3.4.1)

In a Michelson interferometer, an optical element divides a coherent light beam into two parts. The component beams travel different paths, are reflected into each other and finally recombined. As the two component beams have a fixed phase relationship with respect to each other, interference patterns can occur when they are superposed on each other. A change in the optical path length of one component beam alters the phase relation, and thus the interference pattern as well. Thus, given a constant refractive index, a change in the interference pattern can be used to determine a change in the geometric path. When the geometric path is unchanged, then this configuration can be used to investigate changes in the refractive index due to variations e.g. in pressure, temperature and density.
In the experiment P5.3.4.1, the Michelson interferometer is assembled on the vibration-proof laser optics base plate. This setup is ideal for demonstrating the effects of mechanical shocks and air streaking.
In the experiment P5.3.4.2, the wavelength of an He-Ne laser is determined from the change in the interference pattern when moving an interferometer mirror using the shifting distance $\Delta \mathrm{s}$ of the mirror. During this shift, the interference lines on the observation screen move. In evaluation, either the interference maxima or interference minima passing a fixed point on the screen while the plane mirror is shifted are counted. For the wavelength λ, the following equation applies:

$$
\lambda=2 \cdot \frac{\Delta s}{Z}
$$

Z : number of intensity maxima or minima counted

MICHELSON INTERFEROMETER

P5.3.4.3

Determining the wavelength of the light of an $\mathrm{He}-\mathrm{Ne}$ laser using a Michelson interferometer - Set-up on the optical bench

P5.3.4.4

Determination of the coherence time and the line width of spectral lines with the Michelson interferometer

P5.3.4.5

Investigation of the pressure induced line broadening using a Michelson interferometer

P5.3.4.6

Determination of the line splitting of two spectral lines using a Michelson interferometer

Determination of the coherence time and the line width of spectral lines with the Michelson interferometer (P5.3.4.4)

Cat. No.	Description	$\begin{aligned} & \text { m } \\ & \underset{\sim}{2} \\ & \text { ǹ } \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \dot{\sim} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		
471830	He-Ne Laser, linearly polarised	1			
46032	Optical bench with standardised profile, 1 m	1	1	1	1
460373	Optics rider, 60/50	1	1	1	1
460374	Optics rider, 90/50	5	7	7	7
47188	Beam splitter	1	1	1	1
473461	Planar mirror with fine adjustment	2	2	2	2
460380	Cantilever arm	1	1	1	1
46001	Lens in frame, f=5 mm	1			
47348	Fine adjustment mechanism	1	1	1	1
44153	Screen, translucent	1	1	1	1
30011	Saddle base	1	1	1	1
31102	Metal rule, 1 m	1			
451062	Spectral lamp, Hg 100		1	1	1
45116	Housing for spectral lamps		1	1	1
45130	Universal choke, $230 \mathrm{~V}, 50 \mathrm{~Hz}$		1	1	1
46026	Iris diaphragm		2	2	2
46807	Light filter, yellow-green		1	1	
46022	Holder with spring clips		1	1	1
45115	High pressure mercury lamp			1	
45119	Lamp socket, E 27, multi-pin connector			1	
46830	Light filter, yellow				1

Temporal coherence can be investigated by means of a Michelson interferometer. The maximum time difference Δt during which interference can be observed is called the coherence time. The coherence length is defined as the distance $\Delta \mathrm{s}_{\mathrm{C}}$ the light travels in the coherence time. Typical coherence lengths are a few microns in incandescent lamps, some millimeters in spectral lamps and many meters in lasers. In addition, the coherence time $\Delta \mathrm{t}_{\mathrm{C}}$ is connected to the spectral width Δv or $\Delta \lambda$ of the light source:

$$
\Delta \nu=\frac{1}{\Delta t_{c}} \text { or } \Delta \lambda=\frac{1}{c} \cdot \frac{\lambda_{0}^{2}}{\Delta t_{c}}
$$

In the experiment P5.3.4.3, the Michelson interferometer is assembled on the optical bench. The wavelength of an He-Ne laser is determined from the change in the interference pattern when moving an interferometer mirror using the shifting distance Δs of the mirror.
In the experiment P5.3.4.4 the wavelength λ of the green spectral line of a Hg spectral lamp is determined. To measure the coherence length the positions of the movable plane mirror are measured where interference can barely be seen. From the difference in path length the coherence length $\Delta \mathrm{s}_{\mathrm{C}}$, the coherence time $\Delta \mathrm{t}_{\mathrm{C}}$ and the line width Δv of the spectral line are determined.
In experiment P5.3.4.5 the coherence lengths and spectral widths of the green spectral line of a Hg spectral lamp and a high pressure mercury lamp are determined and the results are compared. The higher pressure in the high pressure mercury lamp leads to a significant broadening of the spectral line causing a shorter coherence length.
In the experiment P5.3.4.6 the mean wavelength λ and the line splitting $\Delta \lambda$ of the yellow line doublet is determined. For two different proximate wavelengths λ_{1} and λ_{2} the coherent superposition of two beams leads to a beating: At distinct path length differences the contrast between bright and dark rings of the interference pattern is big while for other path length differences the contrast vanishes completely.

WAVE OPTICS

OTHER TYPES OF INTERFEROMETERS

P5.3.5. 1

Setting up a Mach-Zehnder interferometer on the laser optics base plate

P5.3.5.2

Measuring the refractive index of air with a Mach-Zehnder interferometer

Measuring the refractive index of air with a Mach-Zehnder interferometer (P5.3.5.2)

Cat. No.	Description	¢	N
47340	Laser optics base plate	1	1
471830	He-Ne Laser, linearly polarised	1	1
473411	Laser mount	1	1
473421	Optics base	5	6
473431	Holder for beam divider	2	2
473432	Beam divider, 50 \%	2	2
473461	Planar mirror with fine adjustment	2	2
473471	Spherical lens, $f=2.7 \mathrm{~mm}$	1	1
44153	Screen, translucent	1	1
30011	Saddle base	1	1
31102	Metal rule, 1 m	1	1
473485	Evacuable chamber		1
37558	Hand vacuum pump		1
667186	Vacuum rubber tubing, 8 mm diam.		1
604520	Connector with nipple		1
30002	Stand base, V-shaped, small		1
666555	Universal clamp 0... 80 mm		1

Setting up a Mach-Zehnder interferometer on the laser optics base plate (P5.3.5.1)

In a Mach-Zehnder interferometer, an optical element divides a coherent light beam into two parts. The component beams are deflected by mirrors and finally recombined. As the two partial beams have a fixed phase relationship with respect to each other, interference patterns can occur when they are superposed on each other. A change in the optical path length of one component beam alters the phase relation, and consequently the interference pattern as well. As the component beams are not reflected into each other, but rather travel separate paths, these experiments are easier to comprehend and didactically more effective than experiments with the Michelson interferometer. However, the Mach-Zehnder interferometer is more difficult to adjust.
In the experiment P5.3.5.1, the Mach-Zehnder interferometer is assembled on the vibration-proof laser optics base plate.
In the experiment P5.3.5.2, the refractive index of air is determined. To achieve this, an evacuable chamber is placed in the path of one component beam of the Mach-Zehnder interferometer. Slowly evacuating the chamber alters the optical path length of the respective component beam.

OTHER TYPES OF INTERFEROMETERS

P5.3.5.3
Determining the wavelength of the light of an He -Ne laser using a Fabry-Perot interferometer

Determining the wavelength of the light of an He-Ne laser using a Fabry-Perot interferometer (P5.3.5.3)

		m
Cat. No.	Description	N
47340	Laser optics base plate	1
471830	He-Ne Laser, linearly polarised	1
473411	Laser mount	1
473421	Optics base	5
473432	Beam divider, 50%	2
473431	Holder for beam divider	2
473461	Planar mirror with fine adjustment	1
47348	Fine adjustment mechanism	1
473471	Spherical lens, $\mathrm{f}=2.7 \mathrm{~mm}$	1
44153	Screen, translucent	1
30011	Saddle base	1
31102	Metal rule, 1 m	1

Besides the Michelson and Mach-Zender interferometers, more geometries can be used to split a light beam in two parts and let them overlap afterwards. One with particular practical use is the Fabry-Perot interferometer.
In the experiment P5.3.5.3 the mirrors on the laser base plate are arranged to set up a Fabry-Perot interferometer with two parallel mirrors in line. The first semi-transparent mirror splits the light beam, while the second fully reflective mirror reflects the light back to overlap with the first reflected beam. Moving the second mirror will change the length of the resonator, thus changing the interference pattern and enables the measurement of the laser wavelength.

WAVE OPTICS

WHITE-LIGHT REFLECTION HOLOGRAPHY

P5.3.6. 1

Creating white-light reflection holograms on the laser optics base plate

Creating white-light reflection holograms on the laser optics base plate (P5.3.6.1)

Cat. No.	Description	
47340	Laser optics base plate	1
471830	He-Ne Laser, linearly polarised	1
473411	Laser mount	1
473421	Optics base	3
473441	Film holder	1
473451	Object holder	1
473471	Spherical lens, $\mathrm{f}=2.7 \mathrm{~mm}$	1
31102	Metal rule, 1 m	1
663615	Socket strip for earthed plugs, 5-way	1
31327	Hand-held stop-watch, 60s/0.2s	1
64911	Storage trays, $86 \times 86 \times 26$, set of 6	1
661234	Polyethylene bottle	3
667016	Scissors, 200 mm , pointed	1
473448	Holography film, 3000 lines/mm	1
473446	Darkroom accessories	1
473444	Photographic chemicals	1
6718910	Iron(III) nitrate-9-hydrate, 250 g	1
6724910	Potassium bromide, 100 g	1

In creating white-light reflection holograms, a broadened laser beam passes through a film and illuminates an object placed behind the film. Light is reflected from the surface of the object back onto the film, where it is superposed with the light waves of the original laser beam. The film consists of a light sensitive emulsion of sufficient thickness. Interference creates standing waves within the film, i.e. a series of numerous nodes and antinodes at a distance of $\lambda / 4$ apart. The film is exposed in the planes of the anti-nodes but not in the nodes. Semitransparent layers of metallic silver are formed at the exposed areas. To reconstruct the image, the finished hologram is illuminated with white light the laser is not required. The light waves reflected by the semitransparent layers are superposed on each other in such a way that they have the same properties as the waves originally reflected by the object. The observer sees at threedimensional image of the object. Light beams originating at different layers only reinforce each other when they are in phase. The in-phase condition is only fulfilled for a certain wavelength, which allows the image to be reconstructed using white light.
The object of the experiment P5.3.6.1 is to create white-light reflection holograms. This process uses a protection class 2 laser, so as to minimize the risk of eye damage for the experimenter. Both amplitude and phase holograms can be created simply by varying the photochemical processing of the exposed film.

Experiment setup for creating white-light reflection holograms (P5.3.6.1)

TRANSMISSION HOLOGRAPHY

P5.3.7.1

Creating transmission holograms on the laser optics base plate

Creating transmission holograms on the laser optics base plate (P5.3.7.1)

Cat. No.	Description	「
47340	Laser optics base plate	1
471830	He-Ne Laser, linearly polarised	1
473411	Laser mount	1
473421	Optics base	5
473432	Beam divider, 50 \%	1
473431	Holder for beam divider	1
473441	Film holder	1
473451	Object holder	1
473471	Spherical lens, $\mathrm{f}=2.7 \mathrm{~mm}$	2
31102	Metal rule, 1 m	1
663615	Socket strip for earthed plugs, 5-way	1
31327	Hand-held stop-watch, 60s/0.2s	1
64911	Storage trays, $86 \times 86 \times 26$, set of 6	1
661234	Polyethylene bottle	3
667016	Scissors, 200 mm , pointed	1
473448	Holography film, 3000 lines/mm	1
473446	Darkroom accessories	1
473444	Photographic chemicals	1
6718910	Iron(III) nitrate-9-hydrate, 250 g	1
6724910	Potassium bromide, 100 g	1

In creating transmission holograms, a laser beam is split into an object beam and a reference beam, and then broadened. The object beam illuminates an object and is reflected. The reflected light is focused onto a film together with the reference beam, which is coherent with the object beam. The film records an irregular interference pattern which shows no apparent similarity with the object in question. To reconstruct the hologram, a light beam which corresponds to the reference beam is diffracted at the amplitude hologram in such a way that the diffracted waves are practically identical to the object waves. In reconstructing a phase hologram the phase shift of the reference waves is exploited. In both cases, the observer sees a three-dimensional image of the object.
The object of the experiment P5.3.7.1 is to create transmission holograms and subsequently reconstruct them. This process uses a protection class 2 laser, so as to minimize the risk of eye damage for the experimenter. Both amplitude and phase holograms can be created simply by varying the photochemical processing of the exposed film.

Experiment setup for creating transmission holograms (P5.3.7.1)

POLARIZATION

BASIC EXPERIMENTS

P5.4.1.1
Polarization of light through reflection at a glass plate

P5.4.1.2
Fresnel's laws of reflection

P5.4.1.3

Polarization of light through scattering in an emulsion

P5.4.1.4
Malus' law

Fresnel's laws of reflection (P5.4.1.2)

Cat. No.	Description	$\begin{aligned} & \underset{+}{7} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$? $\stackrel{+}{+}$ \square	
47733	Cuvette made of optical glass $45 \times 12,5 \times 102,5 \mathrm{~mm}$	1	1	1	
46025	Prism table	1	1	1	
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$	1	1		1
45063	Halogen bulb $12 \mathrm{~V} / 100$ W, G6.35	1	1		1
45066	Picture slider	1	1		1
726890	DC-High Current Power Supply 1... 32 V/0... 20 A	1	1		1
46026	Iris diaphragm	1	1	1	1
472401	Polarisation filter	2	2	2	2
46003	Lens in frame, $\mathrm{f}=100 \mathrm{~mm}$	1	1		1
44153	Screen, translucent	1			
460317	Optical bench, S1 profile, 0.5 m	2	2		
4603151	Swivel joint with protactor scale and clamp	1	1		
460311	Clamp rider with clamp 45/65	2	1	1	1
460312	Clamp rider with clamp 45/35	4	6	5	5
500624	Safety connecting lead 50 cm , black	2	2		2
46008	Lens in frame, f=150 mm		1		
57862	Solar cell, STE 2/19		1		1
46021	Holder for plug-in elements		1		1
531183	Digital multimeter 3340		1		1
50098	Safety adapter sockets, black, set of 6		1		1
500621	Safety connecting lead 50 cm , red		1		1
500622	Safety connecting lead 50 cm , blue		1		1
45060	Lamp housing with cable			1	
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}, \mathrm{E} 14$, set of 2			1	
46020	Condenser with diaphragm holder			1	
521210	Transformer 6/12 V			1	
46004	Lens in frame, $\mathrm{f}=200 \mathrm{~mm}$			1	
460310	Optical bench, S1 profile, 1 m			1	1

The fact that light can be polarized is important evidence of the transversal nature of light waves. Natural light is unpolarized. It consists of mutually independent, unordered waves, each of which has a specific polarization state. Polarization of light is the selection of waves having a specific polarization state. In the experiment P5.4.1.1, unpolarized light is reflected at a glass surface. When we view this through an analyzer, we see that the reflected light as at least partially polarized. The greatest polarization is observed when reflection occurs at the polarizing angle (Brewster angle) α_{p}. The relationship

$$
\tan \alpha_{p}=n
$$

gives us the refractive index n of the glass.
Closer observation leads to Fresnel's laws of reflection, which describe the ratio of reflected to incident amplitude for different directions of polarization. These laws are quantitatively verified in the experiment P5.4.1.2.
The experiment P5.4.1.3 demonstrates that unpolarized light can also be polarized through scattering in an emulsion, e. g. diluted milk, and that polarized light is not scattered uniformly in all directions.
The aim of the experiment P5.4.1.4 is to derive Malus's law: when linearly polarized light falls on an analyzer, the intensity of the transmitted light is
$I=I_{0} \cdot \cos ^{2} \varphi$
$I_{0}:$ intensity of incident light
φ : angle between direction of polarization and analyzer

Fresnel's laws of reflection (P5.4.1.2)

BIREFRINGENCE

P5.4.2.1

Birefringence and polarization with calcareous spar

P5.4.2.2

Quarter-wavelength and half-wavelength plate

P5.4.2.3
Photoelasticity: Investigating the distribution of strains in mechanically stressed bodies

Quarter-wavelength and half-wavelength plate (P5.4.2.2)

Cat. No.	Description			m \sim \sim + \sim \sim
47202	Calcite crystal, birefringent	1		
46025	Prism table	1		1
46026	Iris diaphragm	1		1
472401	Polarisation filter	1	2	2
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$	1		
46006	Lens in frame, $f=-100 \mathrm{~mm}$	1		
44153	Screen, translucent	1	1	1
460310	Optical bench, S1 profile, 1 m	1	1	1
460311	Clamp rider with clamp 45/65	2	2	1
460312	Clamp rider with clamp 45/35	5	5	8
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$	1	1	1
45063	Halogen bulb $12 \mathrm{~V} / 100$ W, G6.35	1	1	1
45066	Picture slider	1	1	1
726890	DC-High Current Power Supply 1... 32 V/0... 20 A	1	1	1
500624	Safety connecting lead 50 cm , black	2	2	2
472601	Quarter-wavelength plate, 140 nm		2	2
47259	Half-wavelength plate		1	
46830	Light filter, yellow		1	
57862	Solar cell, STE 2/19		1	
46021	Holder for plug-in elements		1	
531183	Digital multimeter 3340		1	
50098	Safety adapter sockets, black, set of 6		1	
500621	Safety connecting lead 50 cm , red		1	
500622	Safety connecting lead 50 cm , blue		1	
47195	Photoelastic models, set of 4			1
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$			2
30011	Saddle base			1

The validity of Snell's law of refraction is based on the premise that light propagates in the refracting medium at the same velocity in all directions. In birefringent media, this condition is only fulfilled for the ordinary component of the light beam (the ordinary ray); the law of refraction does not apply for the extraordinary ray.
The experiment P5.4.2.1 looks at birefringence of calcite (Iceland spar). We can observe that the two component rays formed in the crystal are linearly polarized, and that the directions of polarization are perpendicular to each other.
The experiment P5.4.2.2 investigates the properties of $\lambda / 4$ and $\lambda / 2$ plates and explains these in terms of their birefringence; it further demonstrates that the names for these plates refer to the path difference between the ordinary and the extraordinary rays through the plates.
In the experiment P5.4.2.3, the magnitude and direction of mechanical stresses in transparent plastic models are determined. The plastic models become optically birefringent when subjected to mechanical stress. Thus, the stresses in the models can be revealed using polarization-optical methods. For example, the plastic models are illuminated in a setup consisting of a polarizer and analyzer arranged at right angles. The stressed points in the plastic models polarize the light elliptically. Thus, the stressed points appear as bright spots in the field of view. In another configuration, the plastic models are illuminated with circularly polarized light and observed using a quarter-wavelength plate and an analyzer. Here too, the stressed points appear as bright spots in the field of view.

Photoelasticity: Investigating the distribution of strains in mechanically stressed

OPTICAL ACTIVITY, POLARIMETRY

P5.4.3.1

Rotation of the plane of polarization with quartz

P5.4.3.2

Rotation of the plane of polarization with sugar solutions

P5.4.3.3

Building a half-shadow polarimeter with discrete elements

P5.4.3.4

Determining the concentration of sugar solutions with a standard commercial polarimeter

Rotation of the plane of polarization with sugar solutions (P5.4.3.2)

Cat. No.	Description	¢	$\begin{aligned} & \text { N } \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	m $\dot{+}$ $\stackrel{m}{2}$	
472621	Quartz, parallel	1			
472641	Quartz, right-handed	1			
472651	Quartz, left-handed	1			
46022	Holder with spring clips	1		1	
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$	1	1	1	
45063	Halogen bulb $12 \mathrm{~V} / 100$ W, G6.35	1	1	1	
45066	Picture slider	1	1	1	
726890	DC-High Current Power Supply 1... $32 \mathrm{~V} / 0 . . .20 \mathrm{~A}$	1	1	1	
46830	Light filter, yellow	1		1	
472401	Polarisation filter	2	2	2	
46003	Lens in frame, $\mathrm{f}=100 \mathrm{~mm}$	1	1	1	
44153	Screen, translucent	1	1	1	
460310	Optical bench, S1 profile, 1 m	1	1	1	
460311	Clamp rider with clamp 45/65	2	2	2	
460312	Clamp rider with clamp 45/35	4	4	5	
500624	Safety connecting lead 50 cm , black	2	2	2	
47733	Cuvette made of optical glass $45 \times 12,5 \times 102,5 \mathrm{~mm}$		1		
46025	Prism table		1	1	
46803	Light filter, red		1		
46807	Light filter, yellow-green		1		
46811	Light filter, blue with violet		1		
666963	Spoon-ended spatula, stainless steel, 120 mm		1	1	1
6746050	D(+)-Sucrose, 100 g		1	1	1
688107	Polarizing foils $38 \mathrm{~mm} \emptyset$, set of 2			1	
688109	Set of 100 slides cover slip $5 \times 5 \mathrm{~cm}$			1	
47731	Cuvette made of optical glass $40 \times 20 \times 104 \mathrm{~mm}$			1	
657591	Polarimeter				1
664111	Beaker, DURAN, 100 ml , tall				1
OHC R221	Compact Balance CR221, $220 \mathrm{~g}: 0.1 \mathrm{~g}$				1

Optical activity is the property of some substances of rotating the plane of linearly polarized light as it passes through the material. The angle of optical rotation is measured using a device called a polarimeter.
The experiment P5.4.3.1 studies the optical activity of crystals, in this case a quartz crystal. Depending on the direction of intersection with respect to the optical axis, the quartz rotates the light clockwise ("right-handed") or counterclockwise ("left-handed"). The angle of optical rotation is strongly dependent on the wavelength of the light; therefore a yellow filter is used.
The experiment P5.4.3.2 investigates the optical activity of a sugar solution. For a given cuvette length d, the angles of optical rotation α of optically active solutions are proportional to the concentration c of the solution.

$$
\begin{aligned}
& \alpha=[\alpha] \cdot c \cdot d \\
& {[\alpha]: \text { rotational effect of the optically active solution }}
\end{aligned}
$$

The object of the experiment P5.4.3.3 is to assemble a half-shadow polarimeter from discrete components. The two main elements are a polarizer and an analyzer, between which the optically active substance is placed. Half the field of view is covered by an additional, polarizing foil, of which the direction of polarization is rotated slightly with respect to the first. This facilitates measuring the angle of optical rotation.
In the experiment P5.4.3.4, the concentrations of sugar solutions are measured using a standard commercial polarimeter and compared with the values determined by weighing.

Determining the concentration of sugar solutions with a standard commercial polarimeter (P5.4.3.4)

KERR EFFECT

P5.4.4.1
Investigating the Kerr effect in nitrobenzene

Investigating the Kerr effect in nitrobenzene (P5.4.4.1)

Cat. No.	Description	\square + + \square
47331	Kerr cell	1
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$	1
45063	Halogen bulb $12 \mathrm{~V} / 100$ W, G6.35	1
45066	Picture slider	1
46803	Light filter, red	1
46805	Light filter, yellow	1
46807	Light filter, yellow-green	1
46811	Light filter, blue with violet	1
472401	Polarisation filter	2
46003	Lens in frame, $\mathrm{f}=100 \mathrm{~mm}$	1
46025	Prism table	1
44153	Screen, translucent	1
46032	Optical bench with standardised profile, 1 m	1
460373	Optics rider, 60/50	6
726890	DC-High Current Power Supply 1... $32 \mathrm{~V} / 0 . . .20 \mathrm{~A}$	1
52170	High-voltage power supply, 10 kV	1
501051	Cable for high voltages, 1.5 m	2
500624	Safety connecting lead 50 cm , black	2
6739410	Nitrobenzene, 250 ml	1

In 1875, J. Kerr discovered that electrical fields cause birefringence in isotropic substances. The birefringence increases quadratically with the electric field strength. For reasons of symmetry, the optical axis of birefringence lies in the direction of the electric field. The normal refractive index of the substance is changed to n_{e} for the direction of oscillation parallel to the applied field, and to n_{0} for the direction of oscillation perpendicular to it. The experiment results in the relationship

$$
\begin{aligned}
& n_{e}-n_{o}=K \cdot \lambda \cdot E^{2} \\
& K: \text { Kerr constant } \\
& \lambda: \text { wavelength of light used } \\
& E: \text { electic field strength }
\end{aligned}
$$

The experiment P5.4.4.1 demonstrates the Kerr effect for nitrobenzol, as the Kerr constant is particularly great for this material. The liquid is filled into a small glass vessel in which a suitable plate capacitor is mounted. The arrangement is placed between two polarization filters arranged at right angles, and illuminated with a linearly polarized light beam. The field of view is dark when no electric field is applied. When an electric field is applied, the field of view brightens, as the light beam gets elliptically polarized when passing through the birefringent liquid.

POCKELS EFFECT

P5.4.5. 1
Demonstrating the Pockels effect in a conoscopic beam path

P5.4.5.2
Pockels effect: transmitting information using modulated light

Demonstrating the Pockels effect in a conoscopic beam path (P5.4.5.1)

Cat. No.	Description	-	N
47290	Pockels cell	1	1
52170	High-voltage power supply, 10 kV	1	1
471830	He-Ne Laser, linearly polarised	1	1
46001	Lens in frame, $f=5 \mathrm{~mm}$	1	
46002	Lens in frame, $f=50 \mathrm{~mm}$	1	
472401	Polarisation filter	1	1
46032	Optical bench with standardised profile, 1 m	1	1
460370	Optics rider, 60/34	5	4
44153	Screen, translucent	1	
30011	Saddle base	1	1
500604	Safety connecting lead, 10 cm , black	1	
500641	Safety connecting lead, 100 cm , red	1	3
500642	Safety connecting lead, 100 cm , blue	1	3
522621	Function generator S 12		1
57862	Solar cell, STE 2/19		1
46021	Holder for plug-in elements		1
53220	AC/DC amplifier 30 W		1
58708	Broad-band speaker		1
50098	Safety adapter sockets, black, set of 6		1
500622	Safety connecting lead 50 cm , blue		2

The occurrence of birefringence and the alteration of existing birefringence in an electrical field as a linear function of the electric field strength is known as the Pockels effect. In terms of the visible phenomena, it is related to the Kerr effect. However, due to its linear dependency on the electric field strength, the Pockels effect can only occur in crystals without an inversion center, for reasons of symmetry.
The experiment P5.4.5.1 demonstrates the Pockels effect in a lithium niobate crystal placed in a conoscopic beam path. The crystal is illuminated with a divergent, linearly polarized light beam, and the transmitted light is viewed behind a perpendicular analyzer. The optical axis of the crystal, which is birefringent even when no electric field is applied, is parallel to the incident and exit surfaces; as a result, the interference pattern consists of two sets of hyperbolas which are rotated 90° with respect to each other. The bright lines of the interference pattern are due to light rays for which the difference Δ between the optical paths of the extraordinary and ordinary rays is an integral multiple of the wavelength λ. The Pockels effect alters the difference of the main refractive indices, $n_{0}-n_{e}$, and consequently the position of the interference lines. When the socalled half-wave voltage U_{1} is applied, Δ changes by one half wavelength. The dark interference lines move to the position of the bright lines, and vice versa. The process is repeated each time the voltage is increased by U_{λ}.
The experiment P5.4.5.2 shows how the Pockels cell can be used to transmit audio-frequency signals. The output signal of a function generator with an amplitude of several volts is superposed on a DC voltage which is applied to the crystal of the Pockels cell. The intensity of the light transmitted by the Pockels cell is modulated by the superposed frequency. The received signal is output to a speaker via an amplifier and thus made audible.

FARADAY EFFECT

P5.4.6.1
Faraday effect: determining Verdet's constant for flint glass as a function of the wavelength

Faraday effect: determining Verdet's constant for flint glass as a function of the wavelength (P5.4.6.1)

Cat. No.	Description	$\overline{6}$ $\dot{+}$ $\stackrel{1}{2}$
560482	Flint glass block with holder	1
460381	Rider base with thread	1
56211	U-core with yoke	1
56031	Bored pole pieces, pair	1
56213	Coil, 250 turns	2
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$	1
45063	Halogen bulb $12 \mathrm{~V} / 100 \mathrm{~W}$, G6.35	1
45066	Picture slider	1
46805	Light filter, yellow	1
46809	Light filter, blue-green	1
46811	Light filter, blue with violet	1
46813	Light filter, violet	1
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$	1
472401	Polarisation filter	2
44153	Screen, translucent	1
46032	Optical bench with standardised profile, 1 m	1
460373	Optics rider, 60/50	5
521551	AC/DC power supply $0 . . .24 \mathrm{~V} / 0 . .10 \mathrm{~A}$	1
726890	DC-High Current Power Supply 1... $32 \mathrm{~V} / 0 . . .20 \mathrm{~A}$	1
524005 W	Mobile-CASSY 2 WiFi	1
5240381	Combi B sensor S	1
50111	Extension cable, 15 pin	1
30002	Stand base, V-shaped, small	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1
30101	Leybold multiclamp	1
500622	Safety connecting lead 50 cm , blue	1
500624	Safety connecting lead 50 cm , black	2
500641	Safety connecting lead, 100 cm , red	1
500642	Safety connecting lead, 100 cm , blue	1

Transparent isotropic materials become optically active in a magnetic field; in other words, the plane of polarization of linearly polarized light rotates when passing through the material. M. Faraday discovered this effect in 1845 while seeking a relationship between magnetic and optical phenomena. The angle of optical rotation of the plane of polarization is proportional to the illuminated length s and the magnetic field B.

$$
\Delta \varphi=V \cdot B \cdot s
$$

The proportionality constant V is known as Verdet's constant, and depends on the wavelength λ of the light and the dispersion.

$$
V=\frac{e}{2 m c^{2}} \cdot \lambda \cdot \frac{d n}{d \lambda}
$$

For flint glass, the following equation approximately obtains:

$$
\frac{d n}{d \lambda}=\frac{1,8 \cdot 10^{-14} \mathrm{~m}^{2}}{\lambda^{3}}
$$

In the experiment P5.4.6.1, the magnetic field is initially calibrated with reference to the current through the electromagnets using a magnetic field probe, and then the Faraday effect in a flint glass square is investigated. To improve measuring accuracy, the magnetic field is reversed each time and twice the angle of optical rotation is measured. The proportionality between the angle of optical rotation and the magnetic field and the decrease of Verdet's constant with the wavelength λ are verified.

QUANTITIES AND MEASURING METHODS OF LIGHTING ENGINEERING

P5.5.1.1

Determining the radiant flux density and the luminous intensity of a halogen lamp

P5.5.1.2

Determining the luminous intensity as a function of the distance from the light source - Measuring with Mobile-CASSY

P5.5.1.3
Verifying Lambert's law of radiation

Verifying Lambert's law of radiation (P5.5.1.3)

Cat. No.	Description		N	m
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$	1		1
45063	Halogen bulb $12 \mathrm{~V} / 100 \mathrm{~W}$, G6.35	1		1
45066	Picture slider	1		
46803	Light filter, red	1		
726890	DC-High Current Power Supply 1...32 V/0... 20 A	1		1
524005 W	Mobile-CASSY 2 WiFi	1	1	1
55736	Moll's thermopile	1		1
5240401	$\mu \mathrm{V}$ sensor S	1		1
524444	Lux Sensor M	1	1	
46003	Lens in frame, $\mathrm{f}=100 \mathrm{~mm}$	1		1
46022	Holder with spring clips	1	1	1
460310	Optical bench, S1 profile, 1 m	1	1	
460311	Clamp rider with clamp 45/65	1	1	1
4603112	Clamp rider with clamp 75/65	1		1
50098	Safety adapter sockets, black, set of 6	1		1
500624	Safety connecting lead 50 cm , black	2		2
500641	Safety connecting lead, 100 cm , red	1		1
500642	Safety connecting lead, 100 cm , blue	1		1
45060	Lamp housing with cable		1	
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}$, E14, set of 2		1	
521210	Transformer 6/12 V		1	
460312	Clamp rider with clamp 45/35		1	2
450681	Halogen bulb $12 \mathrm{~V} / 50 \mathrm{~W}, \mathrm{G6} .35$			1
46026	Iris diaphragm			1
460317	Optical bench, S1 profile, 0.5 m			2
4603151	Swivel joint with protactor scale and clamp			1

Determining the luminous intensity as a function of the distance from the light source - Measuring with Mobile-CASSY (P5.5.1.2)

There are two types of physical quantities used to characterize the brightness of light sources: quantities which refer to the physics of radiation, which describe the energy radiation in terms of measurements, and quantities related to lighting engineering, which describe the subjectively perceived brightness under consideration of the spectral sensitivity of the human eye. The first group includes the irradiance E_{e}, which is the radiated power per unit of area Φ_{e}. The corresponding unit of measure is watts per square meter. The comparable quantity in lighting engineering is illuminance E_{1} i. e. the emitted luminous flux per unit of area Φ, and it is measured in lumens per square meter, or lux for short.
In the experiment P5.5.1.1, the irradiance is measured using the Moll's thermopile, and the luminous flux is measured using a luxmeter. The luxmeter is matched to the spectral sensitivity of the human eye $V(\lambda)$ by means of a filter placed in front of the photoelement. A halogen lamp serves as the light source. From its spectrum, most of the visible light is screened out using a color filter; subsequently, a heat filter is used to absorb the infrared component of the radiation The experiment P5.5.1.2 demonstrates that the luminous intensity is proportional to the square of the distance between a point-type light source and the illuminated surface
The aim of the experiment P5.5.1.3 is to investigate the angular distribution of the reflected radiation from a diffusely reflecting surface, e.g. matte white paper. To the observer, the surface appears uniformly bright; however, the apparent surface area varies with the cosine of the viewing angle. The dependency of the luminous intensity is described by Lambert's law of radiation:

$$
E_{e}(\phi)=E_{e}(0) \cdot \cos \phi
$$

LAWS OF RADIATION

P5.5.2.1
Stefan-Boltzmann law: measuring the radiant intensity of a "black body" as a function of temperature

P5.5.2.2

Stefan-Boltzmann law: measuring the radiant intensity of a „black body" as a function of temperature Recording and evaluating with CASSY

P5.5.2.3
Confirming the laws of radiation with Leslie's cube

Stefan-Boltzmann law: measuring the radiant intensity of a „black body" as a function of temperature (P5.5.2.1)

Cat. No.	Description	-	N	N
55581	Electric oven for tubes, 230 V	1	1	
38943	Black body accessory	1	1	
502061	Safety connecting box, with earth	1	1	
55584	Support for electric oven	1	1	1
524005 W	Mobile-CASSY 2 WiFi	1		1
529676	Temperature probe, NiCr-Ni, 1.5 mm , type K	1	1	1
5240401	$\mu \mathrm{V}$ sensor S	1	1	1
55736	Moll's thermopile	1	1	1
460310	Optical bench, S1 profile, 1 m	1	1	1
460311	Clamp rider with clamp 45/65	2	2	
4603113	Clamp rider with clamp 105/65	2	2	2
460380	Cantilever arm	1	1	
666555	Universal clamp $0 . . .80 \mathrm{~mm}$	1	1	
50098	Safety adapter sockets, black, set of 6	1	1	1
500641	Safety connecting lead, 100 cm , red	1	1	1
500642	Safety connecting lead, 100 cm , blue	1	1	1
388181	Immersion pump	1^{*}	1^{*}	
521231	Low-voltage power supply 3/6/9/12 V	1^{*}	1^{*}	
667194	Silicone tubing $7 \mathrm{~mm} \emptyset, 1 \mathrm{~m}$	1^{*}	1^{*}	
6043131	Wide-mouthed can 101	1^{*}	1^{*}	
524013	Sensor-CASSY 2		1	
524220	CASSY Lab 2		1	
5240673	NiCr-Ni adapter S, type K		1	
389261	Leslie's cube with stirrer			1
30101	Leybold multiclamp			1
30325	Immersion heater			1
664117	Beaker, DURAN, 1000 ml , tall			1
665009	Funnel PP 75 mm Ø			1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)		1	

* additionally recommended

The total radiated power M_{B} of a black body increases in proportion to the fourth power of its absolute temperature T (Stefan-Boltzmann's law).

$$
\begin{aligned}
& M_{B}=\sigma \cdot T^{4} \\
& \sigma=5.67 \cdot 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}: \text { (Stefan-Boltzmann's constant) }
\end{aligned}
$$

For all other bodies, the radiated power M is less than that of the black body, and depends on the properties of the surface of the body. The emittance of the body is described by the relationship

$$
\begin{aligned}
& \varepsilon=\frac{M}{M_{B}} \\
& M: \text { radiated power of body }
\end{aligned}
$$

In the two experiments P5.5.2.1 and P5.5.2.2, a cylindrical electric oven with a burnished brass cylinder is used as a "black body". The brass cylinder is heated in the oven to the desired temperature between 300 and 750 K . A thermocouple is used to measure the temperature. A water-coolable screen is positioned in front of the oven to ensure that the setup essentially measures only the temperature of the burnished brass cylinder. The measurement is conducted using a Moll's thermopile; its output voltage provides a relative measure of the radiated power M. The thermopile can be connected via the $\mu \mathrm{V}$ sensor, either to Mobile-CASSY or to the CASSY computer interface device. In the former case, the measurement must by carried out manually, point by point; the latter configuration enables computer-assisted measuring and evaluation. The aim of the evaluation is to confirm Stefan-Boltzmann's law.

The experiment P5.5.2.3 uses a radiation cube according to Leslie ("Leslie's cube"). This cube has four different face surfaces (metallic matte, metallic shiny, black finish and white finish), which can be heated from the inside to almost $100{ }^{\circ} \mathrm{C}$ by filling the cube with boiling water. The heat radiated by each of the surfaces is measured as a function of the falling temperature. The aim of the evaluation is to compare the emittances of the cube faces.

Stefan-Boltzmann law: measuring the radiant intensity of a "black body" as a function of temperature (P5.5.2.1)

LAWS OF RADIATION

P5.5.2.4
The Wien's displacement law spectral recording of the black body radiation

The Wien's displacement law - spectral recording of the black body radiation (P5.5.2.4)

Cat. No.	Description	+
467251	Compact spectrometer, physics (spectral photometer)	1
460251	Fibre holder	1
459032	Halogen lamp, $12 \mathrm{~V} / 20 \mathrm{~W}$	1
521546	DC Power Supply 0...16 V/0... 5 A	1
460317	Optical bench, S1 profile, 0.5 m	1
460311	Clamp rider with clamp 45/65	1
460313	Clamp rider with fixing column	1
501451	Connecting leads, $19 \mathrm{~A}, 50 \mathrm{~cm}$, black, pair	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1

In the experiment P5.5.2.4 an incandescent lamp, an electric conductor is heated by an electric current causing it to glow. The emitted spectrum is continuous and can be described with Planck's radiation formula. The radiation maximum of the radiation shifts with increasing temperature T according to Wien's displacement law

$$
\lambda_{\max }=2.9 \cdot 10^{-3} \mathrm{~m} \cdot \mathrm{~K} / \mathrm{T}
$$

toward smaller wavelengths; at the same time the maximum value of the radiation increases. At the temperatures attained by normal incandescent lamps, about 2300 to 2900 K , the radiation maximum lies in the infrared spectral range. Halogen lamps reach a somewhat higher operating temperature of about 3000 K .

This experiment will record the spectra of a halogen lamp at different power levels. The specification for color temperature at 12 V nominal voltage allows the wavelength dependency of spectrometer sensitivity to be determined and thus permits a corrected display for the course of spectra intensity. Subsequently voltage will be applied to a halogen lamp then reduced in steps. The lamp's color temperature at each voltage step will be determined by adapting a suitable fit function.

Spectral emission of a light bulb at different temperatures (P5.5.2.4)

MEASUREMENT ACCORDING TO FOUCAULT/MICHELSON

P5.6.1.1

Determining the velocity of light by means of the rotating-mirror method according to Foucault and Michelson - Measuring the image shift as a function of the rotational speed of the mirror

Determining the velocity of light by means of the rotating-mirror method according to Foucault and Michelson Measuring the image shift as a function of the rotational speed of the mirror (P5.6.1.1)

Cat. No.	Description	「
47640	Rotary mirror	1
471830	He-Ne Laser, linearly polarised	1
46320	Front-silvered mirror	1
46012	Lens in frame, $\mathrm{f}=5 \mathrm{~m}$	1
47188	Beam splitter	1
46022	Holder with spring clips	1
311091	Glass scale 50 mm	1
52140	Variable transformer, $0 \ldots .250 \mathrm{~V}$	1
575302	Oscill oscope 30 MHz , digital, PT1265	1
559921	Semiconductor detector	1
50102	BNC cable, 1 m	1
50110	BNC adapter, straight	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \varnothing$	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30044	Stand rod, $100 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30001	Stand base, V-shaped, large	1
30002	Stand base, V-shaped, small	4
30011	Saddle base	1
30101	Leybold multiclamp	2
30109	Bosshead S	1
31102	Metal rule, 1 m	1

Schematic diagram of the velocity of light by means of the rotating-mirror method according to Foucault and Michelson - Measuring the image shift as a function of the rotational speed of the mirror (P5.6.1.1)

Measurement of the velocity of light by means of the rotary mirror method utilizes a concept first proposed by L. Foucault in 1850 and perfected by A. A. Michelson in 1878. In the variation utilized here, a laser beam is deviated into a fixed end mirror located next to the light source via a rotating mirror. The end mirror reflects the light so that it returns along the same path when the rotary mirror is at rest. Part of the returning light is imaged on a scale using a beam divider. A lens images the light source on the end mirror and focuses the image of the light source from the mirror on the scale. The main beam between the lens and the end mirror is parallel to the axis of the lens, as the rotary mirror is set up in the focal point of the lens.
Once the rotary mirror is turning at a high frequency v, the shift Δx of the image on the scale is observed. In the period

$$
\Delta t=\frac{2 a}{c}
$$

which the light requires to travel to the rotary mirror and back to the end mirror, the rotary mirror turns by the angle

$$
\Delta \alpha=2 \pi v \cdot \Delta t
$$

Thus, the image shift is

$$
\Delta x=2 \Delta \alpha \cdot a
$$

The velocity of light can then be calculated as

$$
c=8 \pi \cdot a^{2} \cdot \frac{v}{\Delta x}
$$

To determine the velocity of light in experiment P5.6.1.1, the image shift is measured as a function of the speed of the mirror.

VELOCITY OF LIGHT

MEASURING WITH SHORT LIGHT PULSES

P5.6.2.1
Determining the velocity of light in air from the path and transit time of a short light pulse

Determining the velocity of light in air from the path and transit time of a short light pulse (P5.6.2.1)

Cat. No.	Description	
47650	Light velocity measuring instrument	1
46010	Lens in frame, $\mathrm{f}=200 \mathrm{~mm}$	1
460335	Optical bench with standardised profile, 0.5 m	1
460374	Optics rider, 90/50	2
575302	Oscilloscope 30 MHz , digital, PT1265	1
50102	BNC cable, 1 m	3
31102	Metal rule, 1 m	1
30001	Stand base, V-shaped, large	1
30044	Stand rod, $100 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1
30101	Leybold multiclamp	1

The light velocity measuring instrument emits pulses of light with a pulse width of about 20 ns . After traversing a known measuring distance in both directions, the light pulses are converted into voltage pulses for observation on the oscilloscope.
In the experiment P5.6.2.1, the path of the light pulses is varied once, and the change in the transit time is measured with the oscilloscope. The velocity of light can then be calculated as quotient of the change in the transit distance and the change in the transit time. Alternatively, the total transit time of the light pulses can be measured in absolute terms using a reference pulse. In this case, the velocity of light can be calculated as quotient of the transit distance and the transit time. A quartz-controlled oscilloscope signal can be displayed on the instrument simultaneously with the measuring pulse in order to calibrate timing. Time measurement is then independent of the time base of the oscilloscope.

Schematic diagram of light velocity measurement with short light pulses (P5.6.2.1)

MEASURING WITH AN ELECTRONICALLY MODULATED SIGNAL

P5.6.3.1

Determining the velocity of light using a periodical light signal at a short measuring distance

P5.6.3.2

Determining the velocity of light in various materials

Determining the velocity of light in various materials (P5.6.3.2)

Cat. No.	Description	-	N
476301	Light transmitter and receiver	1	1
575302	Oscilloscope 30 MHz , digital, PT1265	1	1
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$	1	1
30011	Saddle base	2	4
31102	Metal rule, 1 m	1	1
47635	Tube with 2 end windows		1
47634	Transparent plastic block		1^{*}
47732	Cuvette made of optical glass $45 \times 12.5 \times 52.5 \mathrm{~mm}$		1^{*}
46025	Prism table		${ }^{*}$
6719720	Ethanol, denaturated, 1 I		1*
6721210	Glycerin, 99%, 250 ml		${ }^{*}$

* additionally recommended

Determining the velocity of light using a periodical light signal at a short measuring distance (P5.6.3.1)

In determining the velocity of light with an electronically modulated signal, a light emitting diode which pulses at a frequency of 60 MHz is used as the light transmitter. The receiver is a photodiode which converts the light signal into a 60 MHz AC voltage. A connecting lead transmits a reference signal to the receiver which is synchronized with the transmitted signal and in phase with it at the start of the measurement. The receiver is then moved by the measuring distance Δs, so that the received signal is phase-shifted by the additional transit time Δt of the light signal.

$$
\Delta \varphi=2 \pi \cdot f_{1} \cdot \Delta t \text { where } f_{1}=60 \mathrm{MHz}
$$

Alternatively, a medium with a greater index of refraction can be placed in the beam path. The apparent transit time to be measured is increased by means of an electronic "trick". The received signal and the reference signal are each mixed (multiplied) with a 59.9 MHz signal before being fed through a frequency filter which only passes the low frequency components with the differential frequency $f_{1}-f_{2}=0.1 \mathrm{MHz}$. This mixing has no effect on the phase shift; however, this phase shift is now for a transit time Δt^{\prime} increased by a factor of

$$
\frac{f_{1}}{f_{1}-f_{2}}=600
$$

In the experiment P5.6.3.1, the apparent transit time Δt ' is measured as a function of the measuring distance Δs, and the velocity of light in the air is calculated according to the formula

$$
c=\frac{\Delta s}{\Delta t^{\prime}} \cdot \frac{f_{1}}{f_{1}-f_{2}}
$$

The experiment P5.6.3.2 determines the velocity of light in various propagation media. In the way of accessories, this experiment requires a tube 1 m long with two end windows, suitable for filling with water, a glass cell 5 cm wide for other liquids and an acrylic glass body 5 cm wide.

MEASURING WITH AN ELECTRONICALLY MODULATED SIGNAL

P5.6.3.3

Determining the velocity of light using a periodical light signal at a short measuring distance - measuring with the laser motion sensor S and CASSY

P5.6.3.4

Determining the velocity of light for different propagation media measuring with the laser motion sensor S and CASSY

Determining the velocity of light using a periodical light signal at a short measuring distance - measuring with the laser motion sensor S and CASSY (P5.6.3.3)

Cat. No.	Description	m m 0 ñ n	+ \cdots 0 0 ம̈
524013	Sensor-CASSY 2	1	1
524220	CASSY Lab 2	1	1
524073	Laser motion sensor S	1	1
337116	End buffers, pair	1	1
31102	Metal rule, 1 m	1	
47732	Cuvette made of optical glass $45 \times 12.5 \times 52.5 \mathrm{~mm}$		1
47634	Transparent plastic block		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1	1

Modern distance meters use a periodically modulated laser beam for the measurement. They determine the phase shift between the emitted and the reflected modulated laser beam and, with the modulation frequency being known, obtain the time-of-flight t of the light on its path to and back from the reflector. Only afterwards do the distance meters calculate the distance with the aid of the known velocity of light.
In the experment P5.6.3.3, the laser motion sensor S is used as a time-of-flight meter because it is also capable of outputting the time-of-flight t directly. The proportionality between the distance and the time-of-flight of light is confirmed, and the velocity of light is calculated.
In the experiment P5.6.3.4 water and acrylic glass of thickness d are held into the path of the beam, and then the resulting increase of the time-of-flight Δt is measured. With the velocity of light c in air measured in the experiment P5.6.3.3, the velocity of light c_{M} in matter can now be determined:

$$
c_{\mathrm{M}}=2 d\left(\frac{2 d}{c}+\Delta t\right)=\frac{1}{\frac{1}{c}+\frac{\Delta t}{2 d}}
$$

Finally, the refractive index n is determined according to

$$
n=\frac{c}{c_{\mathrm{M}}}=c \cdot\left(\frac{1}{c}+\frac{\Delta t}{2 d}\right)=1+\frac{c}{2 d \cdot \Delta t}
$$

[^12]

PRISM SPECTROMETER

P5.7.1.1

Measuring the line spectra of inert gases and metal vapors using a prism spectrometer

Measuring the line spectra of inert gases and metal vapors using a prism spectrometer (P5.7.1.1)

Cat. No.	Description	「
467231	Spectrometer with goniometer	1
451031	Spectral lamp, He	1
451041	Spectral lamp, Cd	1
45116	Housing for spectral lamps	1
45130	Universal choke, $230 \mathrm{~V}, 50 \mathrm{~Hz}$	1
30002	Stand base, V-shaped, small	1
451011	Spectral lamp, Ne	1^{*}
451071	Spectral lamp, $\mathrm{Hg}-\mathrm{Cd}$	1^{*}
451081	Spectral lamp, TI	1^{*}
451111	Spectral lamp, Na	1^{*}

* additionally recommended

To assemble the prism spectrometer, a flint glass prism is placed on the prism table of a goniometer. The light of the light source to be studied passes divergently through a collimator and is incident on the prism as a parallel light beam. The arrangement exploits the wavelength-dependency of the refractive index of the prism glass: the light is refracted and each wavelength is deviated by a different angle. The deviated beams are observed using a telescope focused on infinity which is mounted on a pivot-mounted arm; this allows the position of the telescope to be determined to within a minute of arc. The refractive index is not linearly dependent on the wavelength; thus, the spectrometer must be calibrated. This is done using e.g. an He spectral lamp, as its spectral lines are known and distributed over the entire visible range.
In the experiment P5.7.1.1, the spectrometer is used to observe the spectral lines of inert gases and metal vapors which have been excited to luminance. To identify the initially "unknown" spectral lines, the angles of deviation are measured and then converted to the corresponding wavelength using the calibration curve. Note: as an alternative to the prism spectrometer, the goniometer can also be used to set up a grating spectrometer (see P5.7.2.1).

Ray path in a grating prism spectrometer (P5.7.1.1)

GRATING SPECTROMETER

P5.7.2. 1
Measuring the line spectra of inert gases and metal vapors using a grating spectrometer

Measuring the line spectra of inert gases and metal vapors using a grating spectrometer (P5.7.2.1)

Cat. No.	Description	「
467231	Spectrometer with goniometer	1
47123	Ruled grating, 6000/cm (Rowland)	1
451031	Spectral lamp, He	1
451111	Spectral lamp, Na	1
45116	Housing for spectral lamps	1
45130	Universal choke, $230 \mathrm{~V}, 50 \mathrm{~Hz}$	1
30002	Stand base, V-shaped, small	1
451011	Spectral lamp, Ne	1^{*}
451041	Spectral lamp, Cd	1^{*}
451071	Spectral lamp, $\mathrm{Hg}-\mathrm{Cd}$	1^{*}
451081	Spectral lamp, TI	1^{*}

ally recommended

To create a grating spectrometer, a copy of a Rowland grating is mounted on the prism table of the goniometer in place of the prism. The ray path in the grating spectrometer is essentially analogous to that of the prism spectrometer (see P 5.7.1.1). However, in this configuration the deviation of the rays by the grating is proportional to the wavelength:

```
sin}\Delta\alpha=n\cdotg\cdot
n: diffraction order
g: grating constant
\lambda: wavelength
```

$\Delta \alpha$: angel of deviation of nth-order spectral line
Consequently, the wavelengths of the observed spectral lines can be calculated directly from the measured angles of deviation.
In the experiment P5.7.2.1, the grating spectrometer is used to observe the spectral lines of inert gases and metal vapors which have been excited to luminance. To identify the initially "unknown" spectral lines, the angles of deviation are measured and then converted to the corresponding wavelength. The resolution of the grating spectrometer is sufficient to determine the distance between the two yellow sodium D-lines $\lambda\left(D_{1}\right)-\lambda\left(D_{2}\right)=0,60 \mathrm{~nm}$ with an accuracy of 0.10 nm . However, this high resolution is achieved at the cost of a loss of intensity, as a significant part of the radiation is lost in the undiffracted zero order and the rest is distributed over multiple diffraction orders on both sides of the zero order.

Ray path in a grating spectrometer (P5.7.2.1)

GRATING SPECTROMETER

P5.7.2.4
Determining the grating constant of a holographic grating with an He-Ne-Laser

P5.7.2.5
Investigating the spectrum of a xenon lamp with a holographic grating

Investigating the spectrum of a xenon lamp with a holographic grating (P5.7.2.5)

Cat. No.	Description	+ +	ก
471830	He-Ne Laser, linearly polarised	1	
46001	Lens in frame, $\mathrm{f}=5 \mathrm{~mm}$	1	
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$	1	1
46009	Lens in frame, $\mathrm{f}=300 \mathrm{~mm}$	1	1
47127	Holographic grating in frame	1	1
441531	Screen	1	1
460335	Optical bench with standardised profile, 0.5 m	1	1
46032	Optical bench with standardised profile, 1 m	1	1
460341	Swivel joint with circular scale	1	1
460374	Optics rider, 90/50	5	6
45080	Xenon lamp		1
45083	Power supply unit for xenon lamp		1
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$		1
46014	Adjustable slit		1
46021	Holder for plug-in elements		1
46022	Holder with spring clips		1
46162	Set of 2 slit diaphragms		1
57862	Solar cell, STE 2/19		1
524013	Sensor-CASSY 2		1
524220	CASSY Lab 2		1
524082	Rotary motion sensor S		1
460382	Tilting rider, 90/50		1
50125	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, red		1
50126	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, blue		1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair		1
	additionally required: PC with Windows XP/Vista/7/8/10 ($\times 86$ or $\times 64$)		1

To assemble a grating spectrometer with very high resolution and high efficiency a holographic reflection grating with 24000 lines/cm is used. The loss of intensity is small compared to a transmission grating.
In the experiment P5.7.2.4 the grating constant of the holographic reflection grating is determined for different values of the angle of incidence. The light source used is a He-Ne-Laser with the wavelength $\lambda=632.8 \mathrm{~nm}$. The best value is achieved for the special case where angle of incidence and angle of diffraction are the same, the so called Littrow condition.
In the experiment P5.7.2.5 the spectrum of a xenon lamp is investigated. The diffraction pattern behind the holographic grating is recorded by varying the position of a screen or a photocell. The corresponding diffraction angle is read of the circular scale of the rail connector or measured by a rotary motion sensor. It is revealed that the spectrum of the lamp which appears white to the eye consists of a variety of different spectral lines.

OPTICAL APPLICATIONS

P5.8.3.1
Optical interferometer

Optical interferometer (P5.8.3.1)

Cat. No.	Description	¢
4745220	Biconcave Lens $\mathrm{f}=-10 \mathrm{~mm}, \mathrm{C} 25$ mount	1
4745264	Beam expander 2.7x	1
474169	Gas Cuvette Assembly	1
474171	Mach Zehnder Beam Combining Assembly	1
474174	Mach-Zehnder Beam Splitting Assembly	1
4745457	Screen with rider	1
4745418	Diode Laser Module 532 nm	1
4745441	Profile Rail, 300 mm	2
4745442	Profile rail 500 mm	1
4745449	Angle Joint, Cross Piece	1
474209	Mounting Plate C25 with Carrier 20 mm	3
4742112	Adjustment holder, 4 axes, with stop angle	1
474213	Adjustment Holder 1 inch, left	1
474251	Transport and Storage Box \#01	2
4747210	LIT: Optical Interferometer	1

While the Michelson interferometer is mainly used to determine the movement of a reflecting object in a nm scale, the Mach-Zehnder interferometer investigates transparent objects and is particularly useful for studying liquid or gas dynamics. Since the Mach-Zehnder is a unidirectional interferometer it is especially useful for measurements where the samples have to be traversed only once or in one direction.

Within the frame of the experiment P5.8.3.1 both, a Michelson- and a MachZehnder interferometer will be realized. The former demonstrates the principle generation of interference patterns and the use of fringe counting in metrology. The latter uses the interference pattern to visualize changes of the index of refraction as a result of changes in physical properties of gasses, like pressure or composition.

LASER BASICS

P5.8.5.3
Emission \&t absorption /
Optical pumping

Emission Et absorption / Optical pumping (P5.8.5.3)

Cat. No.	Description	m
4741032	Collimating optics on carrier, aspherical	1
474104	Focussing Optics, $\mathrm{f}=60 \mathrm{~mm}$	1
4745310	Crystal in holder Nd:YAG 1064 nm	1
474113	Laser Mirror Adjustment Holder, left	1
474137	Spatial filter with adjustable iris	1
4745453	Crossed Hair Target in C25 mount	1
46874	Filter infrared	1
474107	Filter Plate Holder	1
4744025	IR converter screen 800-1400 nm	1
474306	Photodetector signal conditioning box	1
474108	SiPIN photodetector	1
531183	Digital multimeter 3340	1
57524	Screened cable, BNC/4 mm	1
474302	Controller for Diode Laser	1
4741021	Single Mode Diode Laser Head with Adjust	1
4745442	Profile rail 500 mm	1
474122	Optics cleaning set	1
6719700	Ethanol, absolute, 250 ml	1
474251	Transport and Storage Box \#01	1
4747102	LIT: Emission \&t Absorption/Opt. Pumping	1
4745464	Oscilloscope, Dual Channel, Digital	1^{*}
50106	HF-Cable, BNC-BNC, 1.5 m	1^{*}
501061	HF-Cable, BNC-Mini BNC, 1.5 m	1^{*}
4746111	Laser safety goggles 808 and 1064 nm	2*

The experiment P5.8.5.3 introduces to optical pumping as well as emission and absorption. Due to the pumping process spontaneous and stimulated emission is generated. The emission is temporarily as well spectroscopical measured and analyzed. The tuning of the emission wavelength of the pump diode laser due to the temperature allows the recording of the absorption spectrum. From the timely decay of the fluorescence light the lifetime of the excited state is measured and the Einstein coefficient for stimulated emission calculated.

LASER BASICS

P5.8.5.4
Fabry Perot resonator - Fabry Perot mode analyzer

Fabry Perot resonator - Fabry Perot mode analyzer (P5.8.5.4)

Cat. No.	Description	+
474104	Focussing Optics, $\mathrm{f}=60 \mathrm{~mm}$	1
4741404	Lens $\mathrm{f}=150 \mathrm{~mm}, \mathrm{C} 25$ Mount and Plate	1
474140	Beam expander lens, adjustment holder	1
4745213	Achromat f $=20 \mathrm{~mm}, \mathrm{C} 25$ mount	1
4745234	Laser Mirror, flat, M16 mount	1
4745235	Laser Mirror, R $=75 \mathrm{~mm}$, M16 Mount	1
4745236	Laser Mirror, $\mathrm{R}=100 \mathrm{~mm}$, M16 Mount	1
4745237	Laser Mirror, flat, M12 Mount	1
4745238	Laser Mirror, R $=75 \mathrm{~mm}$, M12 Mount	1
4745239	Laser Mirror, $\mathrm{R}=100 \mathrm{~mm}$, M12 Mount	1
474113	Laser Mirror Adjustment Holder, left	1
474317	Piezo Actuator Controller	1
474139	Piezo Element with Adjustment Holder	1
522561	Function generator P	1
50102	BNC cable, 1 m	2
501091	BNC T adapter	1
57524	Screened cable, BNC/4 mm	1
474306	Photodetector signal conditioning box	1
474108	SiPIN photodetector	1
4745464	Oscilloscope, Dual Channel, Digital	1
474303	HeNe Laser High Voltage supply, adjustable	1
4745421	HeNe Pilot Laser Ø 30 mm	1
4745445	Profile Rail 1000 mm	1
474210	Mounting plate Ø 30 mm , carrier 20 mm	2
474122	Optics cleaning set	1
6719700	Ethanol, absolute, 250 ml	1
474251	Transport and Storage Box \#01	2
4747103	LIT: Fabry Perot Resonator	1
471828	Adjustment goggles for $\mathrm{He}-\mathrm{Ne}$-laser	2*

*additionally recommended

A Fabry Perot resonator is formed by two mirrors aligned parallel to each other. The resulting cavity changes transparency when the distance of the mirrors is changed by a multiple of half the wavelength. Scanning the length of the cavity creates a high resolution spectrometer.
Experiment P5.8.5.4 shows an open frame scanning Fabry Perot. As scanner a Piezo element and as probe a two mode Helium Neon laser is used. The mode spectrum of the Helium Neon laser is displayed on an oscilloscope and the characteristic parameter like finesse, free spectral range, resolution and contrast are measured and discussed. Additional components for beam expansion are used to investigate the effect of technical Finesse. Additional mirrors are used to show the difference of a plane and confocal Fabry Perot arrangement.

LASER BASICS

P5.8.5.5
Helium Neon laser

Helium Neon laser (P5.8.5.5)

Cat. No.	Description	Le
4745242	Laser Mirror OC 632, flat, M16 Mount	1
4745243	Laser Mirror VIS 700, M16 Mount	1
4745244	Laser Mirror VIS 1000, M16 Mount	1
4745246	Laser Mirror, flat, M16 Mount	1
474113	Laser Mirror Adjustment Holder, left	1
474114	Laser Mirror Adjustment Holder, right	1
474141	Single Mode Etalon, Adjustmend Holder	1
474137	Spatial filter with adjustable iris	1
4741082	Module G (SiPIN) photodetector on swivel arm	1
531183	Digital multimeter 3340	1
57524	Screened cable, BNC/4 mm	1
50110	BNC adapter, straight	1
474303	HeNe Laser High Voltage supply, adjustable	1
474127	Main Laser Tube with XY-Adjustment	1
4745422	Pilot laser 532 nm (green)	1
4745445	Profile Rail 1000 mm	1
474122	Optics cleaning set	1
6719700	Ethanol, absolute, 250 ml	1
474251	Transport and Storage Box \#01	2
4747104	LIT: HeNe Laser	1
474126	Littrow prism with adjustment holder	1^{*}
474142	Birefringent tuner	1^{*}
4745245	Laser Mirror IR 713, M16 Mount	2^{*}
4744025	IR converter screen 800-1400 nm	1^{*}
471828	Adjustment goggles for $\mathrm{He}-\mathrm{Ne}-\mathrm{laser}$	2^{*}

* additionally recommended

The experiment P5.8.5.5 realises a Helium Neon laser from basic parts. The open frame cavity allows the variation of parameters to measure the beam profile for different cavity mirror configurations and distances. The laser tube is equipped with a Brewster's window on both sides allowing the study of polarisation and losses. Optionally, a Littrow prism selects other wavelengths than the main laser line at 632 nm , especially the orange line at 611 nm . Further line tuning is demonstrated by means of the optional birefringent tuner. 4 different lines can be demonstrated by this element. An etalon is used to obtain the single mode operation of the Helium Neon laser.

SOLID STATE LASER

P5.8.6. 1
Diode laser

Diode laser (P5.8.6.1)

Cat. No.	Description	$\overline{0}$ ∞ ∞ 1
4745266	Collimating cylindrical lens $f=20 \mathrm{~mm}$	1
4745267	Collimating cylindrical lens $f=80 \mathrm{~mm}$	1
4741032	Collimating optics on carrier, aspherical	1
4745310	Crystal in holder Nd:YAG 1064 nm	1
474113	Laser Mirror Adjustment Holder, left	1
474112	Polarisation Analyzer	1
4745453	Crossed Hair Target in C25 mount	1
4744025	IR converter screen 800-1400 nm	1
474306	Photodetector signal conditioning box	1
474108	SiPIN photodetector	1
531183	Digital multimeter 3340	1
57524	Screened cable, BNC/4 mm	1
474302	Controller for Diode Laser	1
4741012	Diode Laser Head, Dual Axes Rotary Mount	1
4745442	Profile rail 500 mm	1
474209	Mounting Plate C25 with Carrier 20 mm	2
474122	Optics cleaning set	1
6719700	Ethanol, absolute, 250 ml	1
474251	Transport and Storage Box \#01	1
4747105	LIT: Diode Laser	1
4745464	Oscilloscope, Dual Channel, Digital	1^{*}
50106	HF-Cable, BNC-BNC, 1.5 m	1^{*}
501061	HF-Cable, BNC-Mini BNC, 1.5 m	1^{*}
4746111	Laser safety goggles 808 and 1064 nm	2^{*}

* additionally recommended

The goal of the experiment P5.8.6.1 is the study of the properties of a laser diode, i.e. the characteristic parameters like the output power and wavelength as function of the temperature. In a next step the spatial intensity distribution is measured. The more or less elliptical beam is formed by means of two cylindrical lenses into an almost circular beam.

SOLID STATE LASER

P5.8.6.2
Diode laser pumped Nd:YAG laser

P5.8.6.3
Frequency doubling, 1064 nm -> 532 nm

P5.8.6.4
Frequency doubling, 1320 nm -> 660 nm
\qquad

Frequency doubling, 1064 nm -> 532 nm (P5.8.6.3)

Cat. No.	Description	$\begin{aligned} & N \\ & \underset{\sim}{0} \\ & \dot{N} \end{aligned}$	m 0 ∞ L م	+
4741032	Collimating optics on carrier, aspherical	1	1	1
474104	Focussing Optics, $\mathrm{f}=60 \mathrm{~mm}$	1	1	1
4745310	Crystal in holder Nd:YAG 1064 nm	1	1	
4745311	Laser mirror in holder SHG 100	1	1	
474113	Laser Mirror Adjustment Holder, left	1	1	1
474114	Laser Mirror Adjustment Holder, right	1	1	1
4745453	Crossed Hair Target in C 25 mount	1	1	1
474107	Filter Plate Holder	1	1	1
46874	Filter infrared	1	1	1
4744025	IR converter screen 800-1400 nm	1	1	1
474306	Photodetector signal conditioning box	1	1	1
474108	SiPIN photodetector	1	1	
4745464	Oscilloscope, Dual Channel, Digital	1	1	1
50106	HF-Cable, BNC-BNC, 1.5 m	1	1	1
501061	HF-Cable, BNC-Mini BNC, 1.5 m	1	1	1
474302	Controller for Diode Laser	1	1	1
474102	Diode Laser Head with Adjustment Holder	1	1	1
4745442	Profile rail 500 mm	1	1	1
474122	Optics cleaning set	1	1	1
6719700	Ethanol, absolute, 250 ml	1	1	1
474251	Transport and Storage Box \#01	1	1	1
4747106	LIT: DPSSL	1	1	1
4746111	Laser safety goggles 808 and 1064 nm	2^{*}	2*	2*
474109	KTP Crystal with Adjustment Holder, green		1	
46877	Light filter green		1	
474137	Spatial filter with adjustable iris		1^{*}	1^{*}
4741094	KTP Crystal with Adjustment Holder, red			1
4745240	Nd:YAG rod $1.3 \mu \mathrm{~m}$ in mirror holder			1
4745241	Mirror SHG $1.3 \mu \mathrm{~m}$			1
4745290	Infrared barrier filter KG5			1
4741081	Modul G InGaAs photodetector			1

OPTICAL FIBRES

P5.8.7.1
Fibre laser

Fibre laser (P5.8.7.1)

Cat. No.	Description	-
474104	Focussing Optics, $\mathrm{f}=60 \mathrm{~mm}$	1
4745308	Bandpass filter $1.5 \mu \mathrm{~m}$ in C 25	1
474190	Fused WDM Coupler 980/1550 nm	1
474191	Fibre collimator with ST connector, left	1
474192	Fibre collimator with ST connector, right	1
474194	ST coupler in C25 mounted	1
4741898	Erbium Doped Fibre Module 8 m	1
474246	Output coupling module	1
4745293	SM Fibre 100 m on drum, ST connector	1
4745296	Fibre Patch Cable ST/ST, Length 0.25 m	3
4745297	Fibre Patch Cable ST/ST, Length 1 m	1
4744025	IR converter screen 800-1400 nm	1
474306	Photodetector signal conditioning box	1
474108	SiPIN photodetector	1
4741084	InGaAs Photodetector	1
4745464	Oscilloscope, Dual Channel, Digital	1
50106	HF-Cable, BNC-BNC, 1.5 m	1
501061	HF-Cable, BNC-Mini BNC, 1.5 m	1
474302	Controller for Diode Laser	1
4745426	Diode laser module, ST fibre connector	1
4745442	Profile rail 500 mm	1
4745444	Profile rail 1000 mm	1
474209	Mounting Plate C25 with Carrier 20 mm	1
474251	Transport and Storage Box \#01	2
4747110	LIT: Fibre Laser	1
474189	Erbium doped fibre 2 m module, ST connect	1^{*}
4741894	Erbium Doped Fibre Module 4 m	1^{*}
4741896	Erbium Doped Fibre Module 16 m	1^{*}
4745278	Passive mode locker module $1.5 \mu \mathrm{~m}$	1^{*}
4745279	Optical isolator $1.5 \mu \mathrm{~m}$	1^{*}
4746111	Laser safety goggles 808 and 1064 nm	2*

In the experiment P5.8.7.1, an Erbium doped fibre is used as active material. Connected to a pump laser, the fluorescence from the erbium fiber is analysed. Before the laser operation at $1.5 \mu \mathrm{~m}$ is studied, the lifetime of the exited state is measured. To form a ring laser a WDM is used to couple the pump light into the fibre and to close the laser ring structure. The ring is opened where a thin glass plate couples a small fraction of the clockwise (cw) and counter clockwise (ccw) laser modes towards a detector.

OPTICAL FIBRES

P5.8.7.3
Glass fibre optics

Glass fibre optics (P5.8.7.3)

Cat. No.	Description	$\stackrel{\text { m }}{\substack{\text { n }}}$
4741036	Collimating Optics on Carrier	1
474151	Coupling Optics, XY- Adjustment Holder	1
474152	Bare Fibre Holder with Translation Stage	1
474154	Bare Fibre Holder on Rotation Stage	1
4745227	Optical Glass Fibre 1000 m , multimode	1
4746420	Optical Fibre Cleaver and Breaker	1
4746421	Adjustable Plastic Cover Stripper	1
4744025	IR converter screen 800-1400 nm	1
474306	Photodetector signal conditioning box	1
474216	Si PIN Photodetector for Swivel Unit, Mounting Plate C25	1
4745464	Oscilloscope, Dual Channel, Digital	1
50106	HF-Cable, BNC-BNC, 1.5 m	1
501061	HF-Cable, BNC-Mini BNC, 1.5 m	1
474302	Controller for Diode Laser	1
4741022	Diode Laser Head with Adjustment Holder	1
4745442	Profile rail 500 mm	1
474251	Transport and Storage Box \#01	1
4747119	LIT: Glass Fibre Optics	1
4745226	Optical Glass Fibre 1000 m , monomode	1^{*}
4745295	Optical Glass Fibre 5000 m , multimode	1^{*}
4746111	Laser safety goggles 808 and 1064 nm	2^{*}

[^13]Experiment P5.8.7.3 introduces to glass fibre optics. Within this experiment the diode laser itself will be characterised with respect to its output power as function of its temperature and injection current. The spatial intensity distribution is measured by means of the provided rotation stage. Cutting and preparing the fibre is part of the practical training. The light of the diode laser is coupled into the fibre by means of adjustable microscope objectives. The coupling efficiency is monitored with the photodetector detecting the light coming out at the end of the fibre.
The intensity distribution of the light emerging at the end of the fibre is measured and the numerical aperture determined.
By modulating the diode laser by means of the provided microprocessor controlled device the time of flight inside the fibre will be measured. From the results either the length of the fibre or the speed of light is calculated.

TECHNICAL APPLICATIONS

P5.8.8.4
Laser Doppler anemometer

Laser Doppler anemometer (P5.8.8.4)

Cat. No.	Description	+
474104	Focussing Optics, $\mathrm{f}=60 \mathrm{~mm}$	2
474107	Filter Plate Holder	1
474187	LDA Beam Splitting Assembly	1
4741876	LDA Beam Deflection and Focussing	1
474188	Ultrasonic particle seeder	1
474315	Ultrasonic Particle Nebuliser	1
474194	ST coupler in C25 mounted	1
4745350	Patch cable ST-ST $600 \mu \mathrm{~m}$	1
4743314	Photodetektor Modul 400-1100 nm	1
4745464	Oscilloscope, Dual Channel, Digital	1
50106	HF-Cable, BNC-BNC, 1.5 m	1
501061	HF-Cable, BNC-Mini BNC, 1.5 m	1
474128	Diode laser module	1
4745442	Profile rail 500 mm	1
474209	Mounting Plate C25 with Carrier 20 mm	1
474251	Transport and Storage Box \#01	2
4747115	LIT: Laser Doppler Anemometer	1
471828	Adjustment goggles for $\mathrm{He}-\mathrm{Ne}$-laser	2*

* additionally recommended

Laser Doppler anemometry is a non-contact optical measurement method to obtain the velocity of a flow (liquid, gas). In the experiment P5.8.8.4 a laser Doppler anemometer is assembled. Among other things, this method is used for the calibration of flow sensors. A laser beam is split into two parts. Focused back to one spot, the laser beams create an interference pattern. Particles in the fluid flow move through the bright and dark zones of the pattern and the scattered light is modulated according to the speed of the particle.
Alternatively, the same setup can be explained in terms of Doppler shifted light. In this experiment, water droplets inside an air stream are used as the scattering particles. The water droplets are too small to stick to surfaces nearby and to wet them. They will just evaporate or bounce off due to surface tension.

Oscilloscope signal of a water droplet passing throught the interference zone (P5.8.8.4)

TECHNICAL APPLICATIONS

P5.8.8.5
HeNe laser gyroscope

HeNe laser gyroscope (P5.8.8.5)

Cat. No.	Description	1 0 ∞ 0 0 \sim
474159	Gyroscope base plate	1
474160	Rotation Unit	1
474330	Stepper Motor Controller, 1 Axis, USB	1
474407	Fringe Detection Unit	1
474308	Photodetector Preamplifier	1
474311	Fringe Up and Down Counter	1
474346	Plug-in power supply 12 V-2.5 A	1
4745464	Oscilloscope, Dual Channel, Digital	1
501061	HF-Cable, BNC-Mini BNC, 1.5 m	4
728950	USB port isolator	1
474303	HeNe Laser High Voltage supply, adjustable	1
4745423	Alignment laser 532 nm	1
474122	Optics cleaning set	1
6719700	Ethanol, absolute, 250 ml	1
4747116	LIT: HeNe Laser Gyroscope	1
	additionally required: PC with Windows 7 or higher	1

Experiment P5.8.8.5 shows the basics of a laser gyroscope. Laser gyroscopes are used, for example, in aircraft to support navigation. A three-mirror mono mode HeNe ring laser is set up; using a green pilot laser adjusting the mirrors is made easy. Both CW and CCW light beams are coupled out of the resonator and fed into an interferometer, creating interference patterns. Rotating this laser, the CW and CCW cavity length is no longer equal due to special relativity, and mixing both light rays will generate a beat frequency in the kHz range. This way the absolute rotation of the laser can be measured.
This is not a Sagnac style interferometer, having the laser medium inside the moving system creates a much more sensitive setup with beat frequency instead of the phase shift of a rotating Sagnac interferometer.

Output signal of the photodiodes during rotation (P5.8.8.5)

P6.2.7.4

Measuring the Zeeman splitting of the red cadmium line as a function of the magnetic field - spectrocopy using a Fabry-Perot etalon

For more information on this experiment, go to page 206.

P6 ATOMIC AND NUCLEAR PHYSICS

P6.1 INTRODUCTORY EXPERIMENTS 193
P6.2 ATOMIC SHELL 198
P6.3 X-RAY PHYSICS 207
P6.4 RADIOACTIVITY 218
P6.5 NUCLEAR PHYSICS 222
P6.6 OUANTUM PHYSICS 229

P6 ATOMIC AND NUCLEAR PHYSICS

P6.1 INTRODUCTORY EXPERIMENTS

P6.1.2 Millikan experiment 193
P6.1.3 Specific electron charge 194
P6.1.4 Planck's constant 195-196
P6.1.5 Dual nature of wave and particle 197
P6.2 ATOMIC SHELL
P6.2.1 Balmer series of hydrogen 198-199
P6.2.2 Emission and absorption spectra 200-202
P6.2.4 Franck-Hertz experiment 203-204
P6.2.6 Electron spin resonance 205
P6.2.7 Normal Zeeman effect 206
P6.3 X-RAY PHYSICS
P6.3.1 Detection of X-rays 207-209
P6.3.2 Attenuation of X-rays
210
P6.3.3 Physics of the atomic shell 211
P6.3.5 X-ray energy spectroscopy 212
P6.3.6 Structure of X-ray spectrums 213-214
P6.3.7 Compton effect at X-rays 215
P6.3.8 X-ray tomography
216-217
P6.4 RADIOACTIVITY
P6.4.1 Detecting radioactivity 218
P6.4.2 Poisson distribution 219
P6.4.3 Radioactive decay and half-life 220
P6.4.4 Attenuation of α-, β - and γ radiation 221
P6.5 NUCLEAR PHYSICS
P6.5.1 Demonstrating paths of particles 222
P6.5.2 Rutherford scattering 223
P6.5.3 Nuclear magnetic resonance 224
P6.5.4 α spectroscopy 225
P6.5.5 γ spectroscopy 226
P6.5.6 Compton effect 227
P6.5.7 Properties of radiation particles 228
P6.6 QUANTUM PHYSICS
P6.6.1 Quantum optics 229
P6.6.2 Particles 230

MILLIKAN EXPERIMENT

P6.1.2.1

Determining the electric unit charge according to Millikan and verifying the charge quantification - Measuring the suspension voltage and the falling speed

P6.1.2.2

Determining the electric unit charge according to Millikan and verifying the charge quantification - Measuring the rising and falling speed

P6.1.2.3

Determining the electric unit charge according to Millikan and verifying the charge quantification - Measuring the suspension voltage and the falling speed with CASSY

P6.1.2.4

Determining the electric unit charge according to Millikan and verifying the charge quantification - Measuring the rising and falling speed with CASSY

Determining the electric unit charge according to Millikan and verifying the charge quantification - Measuring the suspension voltage and the falling speed (P6.1.2.1)

Cat. No.	Description	-	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\dot{o}} \end{aligned}$	n	+
559412	Millikan apparatus	1	1	1	1
559421	Millikan supply unit	1	1	1	1
575471	Counter S	1	2		
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	2	3	3	3
501461	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, black, pair	1	1	1	1
524013	Sensor-CASSY 2			1	1
524220	CASSY Lab 2			1	1
524034	Timer box			1	1
500421	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red				1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)			1	1

With his famous oil-drop method, R. A. Millikan succeeded in demonstrating the quantum nature of minute amounts of electricity in 1910. He caused charged oil droplets to be suspended in the vertical electric field of a plate capacitor and, on the basis of the radius r and the electric field E, determined the charge q of a suspended droplet:

$$
\begin{aligned}
& q=\frac{4 \pi}{3} \cdot r^{3} \cdot \frac{\rho \cdot g}{E} \\
& \rho: \text { density of oil } \\
& g: \text { gravitational acceleratiom }
\end{aligned}
$$

He discovered that q only occurs as a whole multiple of an electron charge e. His experiments are produced here in two variations.
In the variation P6.1.2.1 and P6.1.2.3, the electric field

$$
\begin{aligned}
& E=\frac{U}{d} \\
& \text { d: plate spacing }
\end{aligned}
$$

is calculated from the voltage U at the plate capacitor at which the observed oil droplet just begins to hover. The constant falling velocity v_{1} of the droplet when the electric field is switched off is subsequently measured to determine the radius. From the equilibrium between the force of gravity and Stokes friction, we derive the equation

$$
\begin{aligned}
& \frac{4 \pi}{3} \cdot r^{3} \cdot \rho \cdot g=6 \pi \cdot r \cdot \eta \cdot v_{1} \\
& \eta: \text { viscosity }
\end{aligned}
$$

In the variant P6.1.2.2 and P6.1.2.4, the oil droplets are observed which are not precisely suspended, but which rise with a low velocity v_{2}. The following applies for these droplets:

$$
q \cdot \frac{U}{d}=\frac{4 \pi}{3} \cdot r^{3} \cdot \rho \cdot g+6 \pi \cdot r \cdot \eta \cdot v_{2}
$$

Additionally, the falling speed v_{1} is measured, as in the variant P6.1.2.1 and P6.1.2.3. The measuring accuracy for the charge q can be increased by causing the oil droplet under study to rise and fall over a given distance several times in succession and measuring the total rise and fall times.

SPECIFIC ELECTRON CHARGE

P6.1.3.1
Determining the specific charge of the electron

Determining the specific charge of the electron (P6.1.3.1)

Cat. No.	Description	¢
555571	Fine beam tube	1
555581	Helmholtz coils with holder and measuring device for fine beam tube	1
531120	Multimeter LDanalog 20	2
521651	Tube power supply $0 . . .500 \mathrm{~V}$	1
521546	DC Power Supply 0... $16 \mathrm{~V} / 0 . . .5 \mathrm{~A}$	1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1
500614	Safety connecting lead, 25 cm , black	3
500624	Safety connecting lead 50 cm , black	3
500644	Safety connecting lead, 100 cm , black	7
524005 W	Mobile-CASSY 2 WiFi	1*
5240382	Axial B sensor $\mathrm{S}, \pm 1000 \mathrm{mT}$	1^{*}
50111	Extension cable, 15 pin	1^{*}

* additionally recommended

Circular electron path in fine beam tube (P6.1.3.1)

The mass m_{e} of the electron is extremely difficult to determine in an experiment. It is much easier to determine the specific charge of the electron

$$
\varepsilon=\frac{e}{m_{e}}
$$

from which we can calculate the mass m_{e} for a given electron charge e.
In the experiment P6.1.3.1, a tightly bundled electron beam is diverted into a closed circular path using a homogeneous magnetic field in order to determine the specific electron charge. The magnetic field B which diverts the electrons into the path with the given radius r is determined as a function of the acceleration voltage U. The Lorentz force caused by the magnetic field acts as a centripetal force. It depends on the velocity of the electrons, which in turn is determined by the acceleration voltage. The specific electron charge can thus be determined from the measurement quantities U, B and r according to the formula

$$
\frac{e}{m_{e}}=2 \cdot \frac{U}{B^{2} \cdot r^{2}}
$$

PLANCK'S CONSTANT

P6.1.4.2
Determining Planck's constant

- Separation of wavelengths with a straight-view prism on the optical bench

P6.1.4.3
Determining Planck's constant

- Selection of wavelengths using interference filters on the optical bench

Determining Planck's constant - Selection of wavelengths using interference filters on the optical bench (P6.1.4.3)

Cat. No.	Description		m
55877	Photocell for determining Planck's constant	1	1
558791	Holder for photocell	1	1
460317	Optical bench, S1 profile, 0.5 m	2	1
4603151	Swivel joint with protactor scale and clamp	1	
460311	Clamp rider with clamp 45/65	2	1
4603112	Clamp rider with clamp 75/65	5	4
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$	1	
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$	2	
46162	Set of 2 slit diaphragms	1	
46022	Holder with spring clips	1	
46014	Adjustable slit	1	
46605	Direct vision prism	1	
46604	Holder for direct vision prism	1	
45115	High pressure mercury lamp	1	1
451195	Power supply unit for high-pressure mercury lamp	1	1
53214	Electrometer amplifier	1	1
562791	Plug-in power supply, 12 V AC	1	1
57822	Capacitor, 100 pF, STE 2/19	1	1
57910	Push button (NO), STE 2/19	1	1
590011	Clamping plug	2	2
531120	Multimeter LDanalog 20	1	1
50110	BNC adapter, straight	1	1
50109	BNC/4-mm plug adapter, single-pole	1	1
34089	Coupling plug 4 mm	1	1
50204	Distribution box with earthing socket	1	1
50145	Connecting lead 19 A, 50 cm , red/blue, pair	1	1
500440	Connecting lead, $19 \mathrm{~A}, 100 \mathrm{~cm}$, yellow/green	2	2
46841	Holder for interference filters		1
468401	Interference filter, 578 nm		1
468402	Interference filter, 546 nm		1
468403	Interference filter, 436 nm		1

Cat. No.	Description	$\begin{aligned} & \underset{\sim}{+} \\ & \underset{\sim}{2} \end{aligned}$	m + \vdots 0 0
468406	Interference filter, 365 nm		1
46003	Lens in frame, $\mathrm{f}=100 \mathrm{~mm}$		1
46026	Iris diaphragm		1
468404	Interference filter, 405 nm		1^{*}

When light with the frequency v falls on the cathode of a photocell, electrons are released. Some of the electrons reach the anode where they generate a current in the external circuit, which is compensated to zero by applying a voltage with opposite sign $U=-U_{0}$. The applicable relationship

$e \cdot U_{0}=h \cdot v-W \quad W$: electronic work function

was first used by R. A. Millikan to determine Planck's constant h.
In determining Planck's constant using the photoelectric effect, it must be ensured that only the light of a single spectral line of the high-pressure mercury vapour lamp falls on the cathode of the photocell at any one time. As an alternative to a prism, it is also possible to use narrow-band interference filters to select the wavelength. This simplifies the subsequent optical arrangement, and it is no longer necessary to darken the experiment room. Also, the intensity of the light incident on the cathode can be easily varied using an iris diaphragm.
To determine Planck's quantum constant, the photoelectric effect is used in experiments P6.1.4.2 and P6.1.4.3. It must be ensured that only the light of a single spectral line of the high-pressure mercury vapour lamp falls on the cathode of the photocell at any one time. In experiment P6.1.4.2, the separation of the individual spectral lines is achieved by a straight-sight prism, whereas in experiment P6.1.4.3, this is done by using interferential filters. In both experiments a capacitor is connected between the cathode and the anode of the photocell which is charged by the anode current, thus generating the opposing voltage U. As soon as the opposing voltage reaches the value $-U_{0}$, the anode current is zero and the charging of the capacitor is finished. U_{0} is measured without applying a current by means of an electrometer amplifier.
Note for P6.1.4.2 and P6.1.4.3: The opposing voltage U can alternatively be tapped from a DC voltage source. The I-measuring amplifier D is recommended for sensitive measurements of the anode current (see P6.1.4.4).

PLANCK'S CONSTANT

P6.1.4.4

Determining Planck's constant

- Recording the current-voltage characteristics, selection of wavelengths using interference filters on the optical bench

Determining Planck's constant - Recording the current-voltage characteristics, selection of wavelengths using interference filters on the optical bench (P6.1.4.4)

Cat. No.	Description	+ +
55877	Photocell for determining Planck's constant	1
558791	Holder for photocell	1
460335	Optical bench with standardised profile, 0.5 m	1
460374	Optics rider, 90/50	2
460375	Optics rider, 120/50	3
558792	Filter wheel with diaphragm	1
468401	Interference filter, 578 nm	1
468402	Interference filter, 546 nm	1
468403	Interference filter, 436 nm	1
468404	Interference filter, 405 nm	1
468406	Interference filter, 365 nm	1
46003	Lens in frame, $\mathrm{f}=100 \mathrm{~mm}$	1
46026	Iris diaphragm	1
45115	High pressure mercury lamp	1
451195	Power supply unit for high-pressure mercury lamp	1
53200	I-measuring amplifier D	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
57681	Plug-in board safety socket, 20/10	2
57686	Monocell holder STE 2/50	3
68548	Mono cell 1.5 V (IEC R20)	3
57793	Potentiometer, $1 \mathrm{k} \Omega$, 10-turn, STE 4/50	1
57913	Toggle switch STE 2/19	1
50148	Bridging plugs STE $2 / 19$, set of 10	1
500621	Safety connecting lead 50 cm , red	2
500622	Safety connecting lead 50 cm , blue	2
500644	Safety connecting lead, 100 cm , black	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

When light with the frequency v falls on the cathode of a photocell, electrons are released. Some of the electrons reach the anode where they generate a current in the external circuit, which is compensated to zero by applying a voltage with opposite sign $U=-U_{0}$. The applicable relationship

$e \cdot U_{0}=h \cdot v-W \quad W$: electronic work function

was first used by R. A. Millikan to determine Planck's constant h.
In determining Planck's constant using the photoelectric effect, it must be ensured that only the light of a single spectral line of the high-pressure mercury vapour lamp falls on the cathode of the photocell at any one time. As an alternative to a prism, it is also possible to use narrow-band interference filters to select the wavelength. This simplifies the subsequent optical arrangement, and it is no longer necessary to darken the experiment room. Also, the intensity of the light incident on the cathode can be easily varied using an iris diaphragm.
In the experiment P6.1.4.4 one of the emission lines from a mercury gas discharge lamp is selected by interference filters and focused onto the photocathode. The countervoltage of the anode is varied and the resulting current is measured with high sensitivity. The variation of the characteristic curves under irradiation with different wavelengths leads to the determination of Planck's constant h.

Current-voltage characteristics of the photocell (P6.1.4.4)

DUAL NATURE OF WAVE AND PARTICLE

P6.1.5.1

Diffraction of electrons at a polycrystalline lattice (Debye-Scherrer diffraction)

P6.1.5.2
Optical analogy to electron diffraction at a polycrystalline lattice

Diffraction of electrons at a polycrystalline lattice (Debye-Scherrer diffraction) (P6.1.5.1)

Cat. No.	Description	¢ ¢ \vdots 0	N \sim \vdots 0 0
555626	Electron diffraction tube	1	
555600	Tube stand	1	
52170	High-voltage power supply, 10 kV	1	
31154	Precision vernier callipers	1	
500611	Safety connecting lead, 25 cm , red	1	
500621	Safety connecting lead 50 cm , red	1	
500641	Safety connecting lead, 100 cm , red	1	
500642	Safety connecting lead, 100 cm , blue	1	
500644	Safety connecting lead, 100 cm , black	2	
555629	Cross grating, 5000/cm, rotatable		1
450641	Halogen lamp $12 \mathrm{~V}, 50 / 100 \mathrm{~W}$		1
45063	Halogen bulb $12 \mathrm{~V} / 100$ W, G6.35		1
45066	Picture slider		1
726890	DC-High Current Power Supply 1... $32 \mathrm{~V} / 0 . . .20 \mathrm{~A}$		1
46003	Lens in frame, $\mathrm{f}=100 \mathrm{~mm}$		1
46022	Holder with spring clips		1
44153	Screen, translucent		1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$		1
460310	Optical bench, S1 profile, 1 m		1
460311	Clamp rider with clamp 45/65		2
460312	Clamp rider with clamp 45/35		3
500624	Safety connecting lead 50 cm , black		2

BALMER SERIES OF HYDROGEN

P6.2.1.1

Determining the wavelengths $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\beta}$ and H_{γ} from the Balmer series of hydrogen

P6.2.1.2
Observing the Balmer series of hydrogen using a prism spectrometer

P6.2.1.4
Observing the Balmer series of hydrogen using a compact spectrometer

Determining the wavelengths H_{a}, H_{β} and H_{γ} from the Balmer series of hydrogen (P6.2.1.1)

Cat. No.	Description	$\begin{aligned} & \underset{\sim}{n} \\ & \dot{\oplus} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \dot{Q} \end{aligned}$	+ \vdots \vdots 0 0
45113	Balmer lamp	1	1	1
451141	Power supply unit for Balmer lamp	1	1	1
47123	Ruled grating, 6000/cm (Rowland)	1		
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1		
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$	1		
46003	Lens in frame, $\mathrm{f}=100 \mathrm{~mm}$	1		
46014	Adjustable slit	1		
46022	Holder with spring clips	1		
44153	Screen, translucent	1		
460310	Optical bench, S1 profile, 1 m	1		
4603112	Clamp rider with clamp 75/65	6		
467231	Spectrometer with goniometer		1	
467251	Compact spectrometer, physics (spectral photometer)			1
460251	Fibre holder			1
30011	Saddle base			1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)			1

Emission spectrum of atomic hydrogen (P6.2.1.4)

In the visible range, the emission spectrum of atomic hydrogen has four lines, $H_{\alpha}, H_{\beta}, H_{\gamma}$ and H_{δ}; this sequence continues into the ultraviolet range to form a complete series. In 1885, Balmer empirically worked out a formula for the frequencies of this series

$$
\begin{aligned}
& v=R_{\infty} \cdot\left(\frac{1}{2^{2}}-\frac{1}{\mathrm{~m}^{2}}\right), \mathrm{m}: 3,4,5, \ldots \\
& R_{\infty}: 3.2899 \cdot 10^{15} \mathrm{~s}^{-1}: \text { Rydberg constant }
\end{aligned}
$$

which could later be explained using Bohr's model of the atom.
In the experiment P6.2.1.1, the emission spectrum is excited using a Balmer lamp filled with water vapor, in which an electric discharge splits the water molecules into an excited hydrogen atom and a hydroxyl group. The wavelengths of the lines $\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}$ and H_{γ} are determined using a high-resolution grating. In the first diffraction order of the grating, we can find the following relationship between the wavelength λ and the angle of observation ϑ :

$$
\begin{aligned}
& \lambda=d \cdot \sin \vartheta \\
& d: \text { grating constant }
\end{aligned}
$$

The measured values are compared with the values calculated according to the Balmer formula.
In the experiment P6.2.1.2 the Balmer series is studied by means of a prism spectroscope (complete device).
In the experiment P6.2.1.4 the Balmer series is studied by means of a computer attached compact spectrometer. The optical adjustment is extremely simple, just placing the optical fiber close to the discharge lamp. As a result you get the complete infrared and visible range of the emission spectrum.

BALMER SERIES OF
HYDROGEN

P6.2.1.5
Observing the splitting of the Balmer series on deuterated hydrogen (isotope splitting) Observing the line splitting with a telescope setup

Observing the splitting of the Balmer series on deuterated hydrogen (isotope splitting) - Observing the line splitting with a telescope setup (P6.2.1.5)

The Balmer series of the hydrogen atom is given by the electron transitions to the second energy level (principal quantum number $n=2$) from higher states ($\mathrm{m}: 3,4,5, \ldots$). The wavelength of the emitted photons is given by

$$
\frac{c}{\lambda}=R\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right) \quad R=\text { Rydberg constant }
$$

Here, one assumes that the mass of the nucleus is much bigger than the mass of the electron. For a more exact calculation, the Rydberg constant has to be corrected employing the reduced mass. Therefore, the Rydberg constants RH for hydrogen and RD for the isotope deuterium whose nucleus consists of a proton and a neutron differ. The spectral lines of the Balmer series of deuterium are shifted to somewhat smaller wavelengths compared to the spectral lines of hydrogen. This effect is called isotopic shift.
In the experiment P6.2.1.5 the Balmer series is studied by means of a high resolution spectrometer setup. A holographic grating with the grating constant g is used. The wavelength splitting is calculated from the angle β of the 1 . order maximum and the angle splitting $\Delta \beta$:

$$
\Delta \lambda=g \cdot \cos \beta \cdot \Delta \beta
$$

EMISSION AND ABSORPTION SPECTRA

P6.2.2. 1
Displaying the spectral lines of inert gases and metal vapors

P6.2.2.2
Qualitative investigation of the absorption spectrum of sodium

Displaying the spectral lines of inert gases and metal vapors (P6.2.2.1)

Cat. No.	Description	\square $\underset{\sim}{1}$ \sim 0 0	\sim \sim \sim \sim 0 0
451011	Spectral lamp, Ne	1	
451041	Spectral lamp, Cd	1	
451062	Spectral lamp, Hg 100	1	
451111	Spectral lamp, Na	1	1
45116	Housing for spectral lamps	1	1
45130	Universal choke, $230 \mathrm{~V}, 50 \mathrm{~Hz}$	1	1
47123	Ruled grating, 6000/cm (Rowland)	1	
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$	1	
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$	1	
46003	Lens in frame, $\mathrm{f}=100 \mathrm{~mm}$	1	
46014	Adjustable slit	1	
46022	Holder with spring clips	1	
44153	Screen, translucent	1	1
460310	Optical bench, S1 profile, 1 m	1	
460311	Clamp rider with clamp 45/65	1	
460312	Clamp rider with clamp 45/35	5	
45060	Lamp housing with cable		1
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}, \mathrm{E} 14$, set of 2		1
521210	Transformer 6/12 V		1
30002	Stand base, V-shaped, small		2
30011	Saddle base		1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.		2
666711	Butane gas burner		1
666712 ET3	Butane cartridge, 190 g , set of 3		1
30101	Leybold multiclamp		2
666962	Double-ended spatula, stainless steel, 150 mm		1
6730840	Magnesia rods, 25 pieces		1
6735700	Sodium chloride 250 g		1

When an electron in the shell of an atom or atomic ion drops from an excited state with the energy E_{2} to a state of lower energy E_{1}, it can emit a photon with the frequency

$$
v=\frac{E_{2}-E_{1}}{h}
$$

h : Planck's constant

In the opposite case, a photon with the same frequency is absorbed. As the energies E_{1} and E_{2} can only assume discrete values, the photons are only emitted and absorbed at discrete frequencies. The totality of the frequencies which occur is referred to as the spectrum of the atom. The positions of the spectral lines are characteristic of the corresponding element.
The experiment P6.2.2.1 disperses the emission spectra of metal vapors and inert gases (mercury, sodium, cadmium and neon) using a high-resolution grating and projects these on the screen for comparison purposes.
In the experiment P6.2.2.2, the flame of a Bunsen burner is alternately illuminated with white light and sodium light and observed on a screen. When sodium is burned in the flame, a dark shadow appears on the screen when illuminating with sodium light. From this it is possible to conclude that the light emitted by a sodium lamp is absorbed by the sodium vapor, and that the same atomic components are involved in both absorption and emission.

Qualitative investigation of the absorption spectrum of sodium (P6.2.2.2)

EMISSION AND
ABSORPTION SPECTRA
P6.2.2.3
Investigating the spectrum of a high pressure mercury lamp

Investigating the spectrum of a high pressure mercury lamp (P6.2.2.3)

Cat. No.	Description	m \cdots \cdots \vdots 0
45115	High pressure mercury lamp	1
451195	Power supply unit for high-pressure mercury lamp	1
46002	Lens in frame, $\mathrm{f}=50 \mathrm{~mm}$	1
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$	1
46009	Lens in frame, f=300 mm	1
46014	Adjustable slit	1
47127	Holographic grating in frame	1
441531	Screen	1
460135	Ocular with scale	1
460335	Optical bench with standardised profile, 0.5 m	1
46032	Optical bench with standardised profile, 1 m	1
460341	Swivel joint with circular scale	1
460373	Optics rider, 60/50	1
460374	Optics rider, 90/50	4
460382	Tilting rider, 90/50	1

Spectral lines arise by the transistion of electrons from higher to lower energy states in the shell of excited atoms. The wavelength of the emitted light depends on this energy difference:

$$
\Delta E=h \cdot v=\frac{h \cdot c}{\lambda}
$$

The multiple energy states in the term scheme of mercury results in a large number of lines with different intensities (transition probabilities). These lines can be observed in the visible range respectively measured in the near UV range. In the experiment P6.2.2.3 the spectral lines of a high pressure mercury lamp are investigated with a high-resolution spectrometer assembly using a holographic grating. The grating works in reflection, leading to a high intensity of the lines. Different lines are observed and their wavelengths determined, especially the yellow, green, blue, violet and also the ultraviolet line. Some lines are investigated closely, e.g. the yellow double line, and the splitting of the wavelengths is determined.

EMISSION AND ABSORPTION SPECTRA

P6.2.2.4

Recording the emission spectra of flame colouration

P6.2.2.5
Recording Fraunhofer lines with a compact spectrometer

P6.2.2.6

Recording the spectra of gas discharge lamps with a compact spectrometer

Recording the emission spectra of flame colouration (P6.2.2.4)

Cat. No.	Description	$\dot{+}$ \sim \sim \sim 0 0	$\begin{aligned} & 1 \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \\ & 0 \end{aligned}$	0 \sim \sim \sim 0 0
467251	Compact spectrometer, physics (spectral photometer)	1	1	1
460251	Fibre holder	1	1^{*}	1
30011	Saddle base	1	1^{*}	1
666711	Butane gas burner	1		
666712 ET3	Butane cartridge, 190 g , set of 3	1		
666731	Gas igniter, mechanical	1		
6730840	Magnesia rods, 25 pieces	1		
6045681	Powder spatula, steel, 150 mm	1		
667089	Spotting tile	1		
661088	Salts for flame tests, set of 9	1		
6746950	Hydrochloric acid, $0.1 \mathrm{~mol} / \mathrm{l}, 500 \mathrm{ml}$	1		
46763	Spectral tube, Hg (with Ar)			1
46767	Spectral tube, He			1
46768	Spectral tube, Ar			1
46769	Spectral tube, Ne			1
46781	Holder for spectral tubes			1
52170	High-voltage power supply, 10 kV			1
536251	Measuring resistor, $100 \mathrm{k} \Omega$			1
30002	Stand base, V-shaped, small			1
30040	Stand rod, $10 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.			1
30101	Leybold multiclamp			1
500621	Safety connecting lead 50 cm , red			1
500622	Safety connecting lead 50 cm , blue			1
500611	Safety connecting lead, 25 cm , red			1
500610	Safety connecting lead, 25 cm , yellow/green			1
	additionally required: PC with Windows XP/Vista/7/8/10 ($\times 86$ or $\times 64$)	1	1	1

[^14]When an electron in the shell of an atom or atomic ion drops from an excited state with the energy E_{2} to a state of lower energy E_{1}, it can emit a photon with the frequency

$$
v=\frac{E_{2}-E_{1}}{h}
$$

h : Planck's constant

In the opposite case, a photon with the same frequency is absorbed. As the energies E_{1} and E_{2} can only assume discrete values, the photons are only emitted and absorbed at discrete frequencies. The totality of the frequencies which occur is referred to as the spectrum of the atom. The positions of the spectral lines are characteristic of the corresponding element.
Spectral lines arise by the transistion of electrons from higher to lower energy states in the shell excited atoms. The wavelength of the emitted light depends on this energy difference:

$$
\Delta E=h \cdot v=\frac{h \cdot c}{\lambda}
$$

In the experiment P6.2.2.4 flame tests with metal salts are performed. A compact spectrometer at the USB port of a PC enables the easy recording of such transient processes and analyses the different emission lines. In contrast to classical observation with the eye, the spectrometer records also lines in the IR region, identifying potassium for example.
In the experiment P6.2.2.5 Fraunhofer absorption lines in the solar spectrum are recorded with a compact spectrometer. The presence of several elements in the solar photosphere is shown.
Experiment P6.2.2.6 records the spectra of gas discharge lamps using a compact spectrometer, which allows a very easy access to optical spectroscopy of gases.

Spectra of gas discharge lamps (P6.2.2.6)

FRANCK-HERTZ EXPERIMENT

P6.2.4. 1
Franck-Hertz experiment with mercury - Recording with the oscilloscope

P6.2.4.2

Franck-Hertz experiment with mercury - Recording and evaluation with CASSY

Franck-Hertz experiment with mercury - Recording with the oscilloscope (P6.2.4.1)

Cat. No.	Description	\square \vdots \vdots 0 0	\sim $\underset{\sim}{1}$ \sim 0 0
555854	Hg Franck-Hertz tube	1	1
555864	Socket for Hg Franck-Hertz tube, with DIN connector	1	1
55581	Electric oven for tubes, 230 V	1	1
555880	Franck-Hertz supply unit	1	1
666193	Temperature probe, $\mathrm{NiCr}-\mathrm{Ni}, 1.5 \mathrm{~mm}$	1	1
575304	Digital storage oscilloscope 70 MHz two-channel	1	
57524	Screened cable, BNC/4 mm	2	
524013	Sensor-CASSY 2		1
524220	CASSY Lab 2		1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair		2
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)		1

In 1914, J. Franck and G. Hertz reported observing discontinuous energy emission when electrons passed through mercury vapor, and the resulting emission of the ultraviolet spectral line ($\lambda=254 \mathrm{~nm}$) of mercury. A few months later, Niels Bohr recognized that their experiment supported his model of the atom.
This experiment is offered in two variations, experiments P6.2.4.1 and P6.2.4.2, which differ only in the means of recording and evaluating the measurement data. The mercury atoms are enclosed in a tetrode with cathode, grid-type control electrode, acceleration grid and target electrode. The control grid ensures a virtually constant emission current of the cathode. An opposing voltage is applied between the acceleration grid and the target electrode. When the acceleration voltage U between the cathode and the acceleration grid is increased, the target current / corresponds closely to the tube characteristic once it rises above the opposing voltage. As soon as the electrons acquire sufficient kinetic energy to excite the mercury atoms through inelastic collisions, the electrons can no longer reach the target, and the target current drops. At this acceleration voltage, the excitation zone is directly in front of the excitation grid. When the acceleration voltage is increased further, the excitation zone moves toward the cathode, the electrons can again accumulate energy on their way to the grid and the target current again increases. Finally, the electrons can excite the mercury atoms once more, the target current drops again, and so forth. The $I(U)$ characteristic thus demonstrates periodic variations, whereby the distance between the minima $\Delta U=4.9 \mathrm{~V}$ corresponds to the excitation energy of the mercury atoms from the ground state ${ }^{1} \mathrm{~S}_{0}$ to the first ${ }^{3} \mathrm{P}_{1}$ state.

[^15]
FRANCK-HERTZ EXPERIMENT

P6.2.4.3

Franck-Hertz experiment with neon - Recording with the oscilloscope

P6.2.4.4
Franck-Hertz experiment with neon

- Recording and evaluation with CASSY

Franck-Hertz experiment with neon - Recording and evaluation with CASSY (P6.2.4.4)

Cat. No.	Description		+ $\dot{+}$ \cdots 0 0
555870	Ne Franck-Hertz tube	1	1
555871	Holder with socket and screen	1	1
555872	Connecting cable for Ne Franck-Hertz tube	1	1
555880	Franck-Hertz supply unit	1	1
575304	Digital storage oscilloscope 70 MHz two-channel	1	
57524	Screened cable, BNC/4 mm	2	
524013	Sensor-CASSY 2		1
524220	CASSY Lab 2		1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair		2
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)		1

When neon atoms are excited by means of inelastic electron collision at a gas pressure of approx. 10 hPa , excitation is most likely to occur to states which are 18.7 eV above the ground state. The de-excitation of these states can occur indirectly via intermediate states, with the emission of photons. In this process, the photons have a wavelength in the visible range between red and green. The emitted light can thus be observed with the naked eye and e.g. measured using the school spectroscope Kirchhoff/Bunsen (467 112).
The Franck-Hertz experiment with neon is offered in two variations, experiments P6.2.4.3 and P6.2.4.4, which differ only in the means of recording and evaluating the measurement data. In both variations, the neon atoms are enclosed in a glass tube with four electrodes: the cathode K, the grid-type control electrode G_{1}, the acceleration grid G_{2} and the target electrode A. Like the Franck-Hertz experiment with mercury, the acceleration voltage U is continuously increased and the current I of the electrons which are able to overcome the opposing voltage between G_{2} and A and reach the target is measured. The target current is always lowest when the kinetic energy directly in front of grid G_{2} is just sufficient for collision excitation of the neon atoms, and increases again with the acceleration voltage. We can observe clearly separated luminous red layers between grids G_{1} and G_{2}; their number increases with the voltage. These are zones of high excitation density, in which the excited atoms emit light in the visible spectrum.

ELECTRON SPIN RESONANCE

P6.2.6.2
Electron spin resonance at DPPH - determinig the magnetic field as a function of the resonance frequency

P6.2.6.3

Resonance absorption of a passive RF oscillator circuit

Electron spin resonance at DPPH - determinig the magnetic field as a function of the resonance frequency (P6.2.6.2)

Cat. No.	Description	N ¢ N ¢ 0	m 0 N 0 0
51455	ESR basic unit	1	1
514571	ESR supply unit	1	1
555604	Pair of Helmholtz coils	1	
575304	Digital storage oscilloscope 70 MHz two-channel	1	1
50102	BNC cable, 1 m	2	
30011	Saddle base	3	2
50120	Connecting lead, $32 \mathrm{~A}, 25 \mathrm{~cm}$, red	1	
50125	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, red	1	
50126	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, blue	1	
531120	Multimeter LDanalog 20		1
57524	Screened cable, BNC/4 mm		1
501644	Two-way adapters, black, set of 6		1
59013	Stand rod with bore holes		1

The magnetic moment of the unpaired electron with the total angular momentum j in a magnetic field assumes the discrete energy states

$$
\begin{aligned}
& E_{\mathrm{m}}=-g_{\mathrm{j}} \cdot \mu_{\mathrm{B}} \cdot m \cdot B \text { where } m=-j,-j+1, \ldots, j \\
& \mu_{\mathrm{B}}=9.274 \cdot 10^{-24} \frac{\mathrm{~J}}{\mathrm{~T}}: \text { Bohr's magneton } \\
& g_{\mathrm{j}}: g \text { factor }
\end{aligned}
$$

When a high-frequency magnetic field with the frequency v is applied perpendicularly to the first magnetic field, it excites transitions between the adjacent energy states when these fulfill the resonance condition

$$
\begin{aligned}
& h \cdot v=E_{m+1}-E_{m} \\
& h: \text { Planck's constant }
\end{aligned}
$$

This fact is the basis for electron spin resonance, in which the resonance signal is detected using radio-frequency technology. The electrons can often be regarded as free electrons. The g-factor then deviates only slightly from that of the free electron ($\mathrm{g}=2.0023$), and the resonance frequency v in a magnetic field of 1 mT is about 27.8 MHz . The actual aim of electron spin resonance is to investigate the internal magnetic fields of the sample substance, which are generated by the magnetic moments of the adjacent electrons and nuclei.
The experiment P6.2.6.2 verifies electron spin resonance in diphenylpicrylhydrazyl (DPPH). DPPH is a radical, in which a free electron is present in a nitrogen atom. In the experiment, the magnetic field B which fulfills the resonance condition the resonance frequencies v can be set in a continuous range from 13 to 130 MHz . The aim of the evaluation is to determine the g factor.
The object of the experiment P6.2.6.3 is to verify resonance absorption using a passive oscillator circuit.

NORMAL ZEEMAN EFFECT

P6.2.7.3
Observing the normal Zeeman effect in transverse and longitudinal configuration - spectroscopy using a Fabry-Perot etalon

P6.2.7.4

Measuring the Zeeman splitting of the red cadmium line as a function of the magnetic field - spectroscopy using a Fabry-Perot etalon

Observing the normal Zeeman effect in transverse and longitudinal configuration - spectroscopy using a FabryPerot etalon (P6.2.7.3)

\begin{tabular}{|c|c|c|c|}
\hline Cat. No. \& Description \& n

\sim
\vdots
0 \& \pm
\vdots
\vdots
0
0

\hline 45112 \& Spectral lamp, Cd, with holding plate \& 1 \& 1

\hline 45130 \& Universal choke, $230 \mathrm{~V}, 50 \mathrm{~Hz}$ \& 1 \& 1

\hline 56211 \& U-core with yoke \& 1 \& 1

\hline 562131 \& Coil, 480 turns, 10 A \& 2 \& 2

\hline 560315 \& Pole pieces with large bore, pair \& 1 \& 1

\hline 521551 \& AC/DC power supply 0... $24 \mathrm{~V} / 0 . .10 \mathrm{~A}$ \& 1 \& 1

\hline 471221 \& Fabry-Perot etalon mirror, in holder \& 1 \& 1

\hline 46008 \& Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$ \& 2 \& 2

\hline 472601 \& Quarter-wavelength plate, 140 nm \& 1 \&

\hline 472401 \& Polarisation filter \& 1 \&

\hline 46841 \& Holder for interference filters \& 1 \& 1

\hline 468400 \& Interference filter, 644 nm \& 1 \& 1

\hline 460135 \& Ocular with scale \& 1 \& 1

\hline 46032 \& Optical bench with standardised profile, 1 m \& 1 \& 1

\hline 460381 \& Rider base with thread \& 1 \& 1

\hline 460373 \& Optics rider, 60/50 \& 7 \& 5

\hline 50130 \& Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, red \& 1 \& 1

\hline 50131 \& Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, blue \& 2 \& 2

\hline 6621584 \& WEBCAM with USB 1080p \& \& 1

\hline 688801 \& Stand rod with photo thread 1/4", $10 \times 112.5 \mathrm{~mm}$ \& \& 1

\hline 460374 \& Optics rider, 90/50 \& \& 1

\hline 524005 W \& Mobile-CASSY 2 WiFi \& \& 1

\hline 5240381 \& Combi B sensor S \& \& 1

\hline 50111 \& Extension cable, 15 pin \& \& 1

\hline 30002 \& Stand base, V-shaped, small \& \& 1

\hline 30042 \& Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam. \& \& 1

\hline \multirow[t]{2}{*}{30101} \& Leybold multiclamp \& \& 1

\hline \& | additionally required: |
| :--- |
| PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$) | \& \& 1

\hline
\end{tabular}

The Zeeman effect is the name for the splitting of atomic energy levels in an external magnetic field and, as a consequence, the splitting of the transitions between the levels. The effect was predicted by H. A. Lorentz in 1895 and experimentally confirmed by P. Zeeman one year later. In the red spectral line of cadmium ($\lambda=643.8 \mathrm{~nm}$), Zeeman observed a line triplet perpendicular to the magnetic field and a line doublet parallel to the magnetic field, instead of just a single line. Later, even more complicated splits were discovered for other elements, and were collectively designated the anomalous Zeeman effect. It eventually became apparent that the normal Zeeman effect is the exception, as it only occurs at transitions between atomic levels with the total spin $\mathrm{S}=0$.
In the experiment P6.2.7.3, the Zeeman effect is observed at the red cadmium line perpendicular and parallel to the magnetic field, and the polarization state of the individual Zeeman components is determined. The observations are explained on the basis of the radiating characteristic of dipole radiation. The so-called π component corresponds to a Hertzian dipole oscillating parallel to the magnetic field, i.e. it cannot be observed parallel to the magnetic field and radiates linearly polarized light perpendicular to the magnetic field. Each of the two σ components corresponds to two dipoles oscillating perpendicular to each other with a phase differential of 90°. They radiate circularly polarized light in the direction of the magnetic field and linearly polarized light parallel to it.
In the experiment P6.2.7.4, the Zeeman splitting of the red cadmium line is measured as a function of the magnetic field B. The energy interval of the triplet components

$$
\begin{aligned}
& \Delta E=\frac{h}{4 \pi} \cdot \frac{e}{m_{\mathrm{e}}} \cdot B \\
& m_{\mathrm{e}}: \text { mass of electron, e: electron charge } \\
& h: \text { Planck's constant } \\
& B: \text { magnetic induction }
\end{aligned}
$$

is used to calculate the specific electron charge.

DETECTION OF X-RAYS

P6.3.1.1
Fluorescence of a luminescent screen due to X -rays

P6.3.1.2
X-ray photography: Exposure of film stock due to X -rays

P6.3.1.5
Investigation of an implant model
P6.3.1.6
Influence of a contrast medium on the absorption of X -rays

Investigation of an implant model (P6.3.1.5)

Cat. No.	Description	$\begin{aligned} & \underset{\sim}{1} \\ & \underset{\sim}{n} \\ & 0 \end{aligned}$	$\underset{1}{2}$ $\underset{\sim}{2}$ 0 0	? $\underset{\sim}{3}$ 0 0	¢
554800	X-ray apparatus	1	1	1	1
554861	X-ray tube, Mo	1	1	1	1
554838	Film holder, X-ray		1	1	
554895	X-ray film		1		
5548391	Implant model			1	
554839	Blood vessel model for contrast medium				1
602023	Beaker, Boro 3.3, 150 ml , squat				1
602295	Bottle brown glass wide treath with cap				1
602783	Glass rod, 200 mm , diam. 6 mm				1
6726610	Potassium iodide, 100 g				1

Soon after the discovery of X-rays by W. C. Röntgen, physicians began to exploit the ability of this radiation to pass through matter which is opaque to ordinary light for medical purposes. The technique of causing a luminescent screen to fluoresce with X-ray radiation is still used today for screen examinations, although image amplifiers are used additionally. The exposure of a film due to X-ray radiation is used both for medical diagnosis and materials testing, and is the basis for dosimetry with films.
The experiment P6.3.1.1 demonstrates the transillumination with X -rays using simple objects made of materials with different absorption characteristics. A luminescent screen of zinc-cadmium sulfate is used to detect X-rays; the atoms in this compound are excited by the absorption of X -rays and emit light quanta in the visible light range. This experiment investigates the effect of the emission current / of the X-ray tube on the brightness and the effect of the high voltage U on the contrast of the luminescent screen.
The experiment P6.3.1.2 records the transillumination of objects using X-ray film. Measuring the exposure time required to produce a certain degree of exposure permits quantitative conclusions regarding the intensity of the x-rays. The experiment P6.3.1.5 demonstrates the use of radioscopy to detect hidden objects. A metal rod inside a block of wood is visually invisible, but can be seen by X -ray fluorescence and its dimensions measured.
The experiment P6.3.1.6 demonstrates the use of contrast medium. The radiopaque iodine solution is flowing through channels inside a plate and is clearly visible in the X -ray fluorescence image, but pure water is not.

DETECTION OF X-RAYS

P6.3.1.3
Detecting X-rays using an ionization chamber

P6.3.1.4
Determining the ion dose rate of the X-ray tube with molydenum anode

Detecting X-rays using an ionization chamber (P6.3.1.3)

Cat. No.	Description	
554800	X-ray apparatus	1
554861	X-ray tube, Mo	1
554840	Plate capacitor, X-ray	1
52227	Power supply, 450 V	1
53214	Electrometer amplifier	1
57702	Resistor, 1 G Ω, STE2/19	1
531120	Multimeter LDanalog 20	2
57524	Screened cable, BNC/4 mm	1
501451	Connecting leads, $19 \mathrm{~A}, 50 \mathrm{~cm}$, black, pair	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	2

As X-rays ionize gases, they can also be measured via the ionization current of an ionization chamber.
The aim of the experiments P6.3.1.3 and P6.3.1.4 is to detect X-rays using an ionization chamber. While experiment P6.3.1.3 focuses on the investigation of the saturation characteristics of the experimental setup, experiment P6.3.1.4 investigates the ion dose rate to quantify the effect of X-rays. The mean ion dose rate

$$
\bar{J}=\frac{I_{\text {ion }}}{m}
$$

is calculated from the ionization current $I_{\text {ion }}$ which the X-radiation generates in the irradiated volume of air V, and the mass m of the irradiated air. The measurements are conducted for various emission currents I and high voltages U of the X-ray tube.

Mean ion dose rate j as a function of the tube high voltage $U, I=1.0 \mathrm{~mA}$ (P6.3.1.4)

DETECTION OF X-RAYS

P6.3.1. 11
Digital X-ray photography with the computed tomography module

P6.3.1.12
Digital X-ray photography with the X-ray image sensor

Digital X-ray photography with the X-ray image sensor (P6.3.1.12)

Cat. No.	Description	F	
554800	X-ray apparatus	1	1
554866	X-ray tube, Au	1	1
554821	Computed tomography module	1	
554838	Film holder, X-ray	1	
5548382	Object holder X -ray 1	1	
554834	Absorption accessory, X-ray	1	1
554822	Test patterns, 2D	1	1
5548281	X-ray image sensor		1
5548291	Precision rail for X -ray image sensor		1
5548292	Object holder X -ray 2		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1

In X-ray radiography and image processing it is necessary to know the properties of the radiation source as well as the properties of the irradiated object. The minimum resolution in an image is determined by the size of the focal spot and the visbility of details in an image depends on the different attenuation properties of various materials and the radiation spectrum of the X -ray-source.
The experiment P6.3.1.11 measures the attenuation of X-rays through the quantitative analysis of a digital X -ray image on the computer, the contrast of a digital X-ray image as a function of the energy and intensity of x-radiation is measured and the resolution digital radiographs is determined using various test images.
The experiment P6.3.1.12 measures the attenuation of X-rays through the quantitative analysis of a digital X -ray image on the computer, the contrast of a digital X-ray image as a function of the energy and intensity of x-radiation is measured, the resolution digital radiographs is determined using various test images and the focal spot of the anode of the x-ray tube is measured by a simple geometric projection on the X -ray image sensor.

[^16]
ATTENUATION OF X-RAYS

P6.3.2.1
Investigating the attenuation of X-rays as a function of the absorber material and absorber thickness

P6.3.2.2

Investigating the wavelength dependency of the attenuation coefficient

P6.3.2.3

Investigating the relationship between the attenuation coefficient and the atomic number Z

P6.3.2.4

Investigating the attenuation of X-rays as a function of distance

Investigating the attenuation of X-rays as a function of the absorber material and absorber thickness (P6.3.2.1)

Cat. No.	Description	$\begin{aligned} & \overline{\mathrm{N}} \\ & \text { è } \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { y } \\ & \text { Ǹ } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { N் } \\ & \text { jo } \end{aligned}$	+ N 0 0 0
554800	X-ray apparatus	1	1	1	1
554861	X-ray tube, Mo	1	1	1	
554831	Goniometer	1	1	1	
55901	End-window counter with cable for α, β, γ and X-rays	1	1	1	
554834	Absorption accessory, X-ray	1			
55478	NaCl crystal for Bragg reflection		1	1	
554832	Set of absorber foils		1	1	
554866	X-ray tube, Au				1
5548281	X-ray image sensor				1
5548291	Precision rail for X -ray image sensor				1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)		1		1

Investigating the attenuation of X -rays as a function of the absorber thickness (P6.3.2.1)

The attenuation of X-rays on passing through an absorber with the thickness d is described by Lambert's law for attenuation:

$$
\begin{aligned}
& I=I_{0} \cdot e^{-\mu d} \\
& I_{0}: \text { intensity of primary beam }
\end{aligned}
$$

l : transmitted intensity

Here, the attenuation is due to both absorption and scattering of the X-rays in the absorber. The linear attenuation coefficient μ depends on the material of the absorber and the wavelength λ of the X -rays. An absorption edge, i.e. an abrupt transition from an area of low absorption to one of high absorption, may be observed when the energy $h \cdot v$ of the X-ray quantum just exceeds the energy required to move an electron out of one of the inner electron shells of the absorber atoms.
The object of the experiment P6.3.2.1 is to confirm Lambert's law using aluminium and to determine the attenuation coefficients μ for six different absorber materials averaged over the entire spectrum of the X-ray apparatus.
The experiment P6.3.2.2 records the transmission curves

$$
\mathrm{T}(\lambda)=\frac{I(\lambda)}{I_{0}(\lambda)}
$$

for various absorber materials. The aim of the evaluation is to confirm the λ^{3} relationship of the attenuation coefficients for wavelengths outside of the absorption edges.
In the experiment P6.3.2.3, the attenuation coefficient $\mu(\lambda)$ of different absorber materials is determined for a wavelength λ which lies outside of the absorption edge. This experiment reveals that the attenuation coefficient is closely proportional to the fourth power of the atomic number Z of the absorbers.
In the experiment P6.3.2.4 the intensity of th X -radiation is measured at different distances from the X-ray tube. The inverse square distance law is confirmed.

Investigating the energy spectrum of an X-ray tube as a function of the high voltage and the emission current (P6.3.3.2)

PHYSICS OF THE ATOMIC SHELL

P6.3.3.1

Bragg reflection: diffraction of X-rays at a monocrystal

P6.3.3.2

Investigating the energy spectrum of an X-ray tube as a function of the high voltage and the emission current

P6.3.3.3

Duane-Hunt relation and determination of Planck's constant

P6.3.3.5

Edge absorption: filtering X-rays

P6.3.3.6

Moseley's law and determination of the Rydberg constant

Cat. No.	Description		n ñ ñ 0	¢
554801	X-ray apparatus, Mo, complete	1	1	1
55901	End-window counter with cable for α, β, γ and X -rays	1	1	1
554832	Set of absorber foils			1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1	1

Bragg spectrum of a molybdenum anode (P6.3.3.1)

The radiation of an X-ray tube consists of two components: continuous bremsstrahlung radiation is generated when fast electrons are decelerated in the anode. Characteristic radiation consisting of discrete lines is formed by electrons dropping to the inner shells of the atoms of the anode material from which electrons were liberated by collision.
To confirm the wave nature of X-rays, the experiment P6.3.3.1 investigates the diffraction of the characteristic K_{α} and K_{β} lines of the molybdenum anode at an NaCl monocrystal and explains these lines using Bragg's law of reflection.
The experiment P6.3.3.2 records the energy spectrum of the X-ray apparatus as a function of the high voltage and the emission current using a goniometer in the Bragg configuration. The aim is to investigate the spectral distribution of the continuum of bremsstrahlung radiation and the intensity of the characteristic lines.
The experiment P6.3.3.3 measures how the limit wavelength $\lambda_{\text {min }}$ of the continuum of bremsstrahlung radiation depends on the high voltage U of the X-ray tube. When we apply the Duane-Hunt relationship

$$
\begin{aligned}
& e \cdot U=h \cdot \frac{c}{\lambda_{\min }} \\
& e: \text { electron charge } \\
& c: \text { velocity of light }
\end{aligned}
$$

to the measurement data, we can derive Planck's constant h.
The object of the experiment P6.3.3.5 is to filter X-rays using the absorption edge of an absorber, i. e. the abrupt transition from an area of low absorption to one of high absorption.
The experiment P6.3.3.6 determines the wavelengths I_{K} of the absorption edges as as function of the atomic number Z. When we apply Moseley's law

$$
\frac{1}{\lambda_{\mathrm{k}}}=R \cdot(Z-\sigma)^{2}
$$

to the measurement data we obtain the Rydberg constant R and the mean screening σ.

X-RAY ENERGY SPECTROSCOPY

P6.3.5. 1

Recording and calibrating an X-ray energy spectrum

P6.3.5.2

Recording the energy spectrum of a molybdenum anode
P6.3.5.3
Recording the energy spectrum of a copper anode

P6.3.5. 4

Investigation of the characteristic spectra as a function of the element's atomic number: K -lines
P6.3.5.5
Investigation of the characteristic spectra as a function of the element's atomic number: L -lines

P6.3.5.6

Energy-resolved Bragg reflection in different orders of diffraction

Recording and calibrating an X-ray energy spectrum (P6.3.5.1)

Cat. No.	Description			$\begin{aligned} & \dot{H} \\ & \dot{n} \\ & \dot{p} \end{aligned}$	L ก n 0 0	0 0 0 0 0
554800	X-ray apparatus	1	1	1	1	1
554861	X-ray tube, Mo	1		1	1	
554831	Goniometer	1	1	1	1	1
559938	X-ray energy detector	1	1	1	1	1
524013	Sensor-CASSY 2	1	1	1	1	1
524220	CASSY Lab 2	1	1	1	1	1
524058	MCA box	1	1	1	1	1
50102	BNC cable, 1 m	1	1	1	1	1
554862	X-ray tube, Cu		1			1
554844	Set of targets for K-line fluorescence			1		
554846	Set of targets for L-line fluorescence				1	
55478	NaCl crystal for Bragg reflection					1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1	1	1	1

X-ray flourescence of different elements (P6.3.5.4/5)

The X-ray energy detector enables recording of the energy spectrum of X-rays. The detector is a Peltier-cooled photodiode where in the incoming X-rays produce electron-hole pairs. The number of electron-hole pairs and thus the voltage pulse height after amplification is proportional to the X-ray energy. The pulse height analysis is carried out with CASSY used as a multichannel analyzer (MCA-Box), which is connected to a computer (PC).
The object of the experiment P6.3.5.1 is to record the X-ray fluorescence spectrum of a target and to use the known energies for calibration of the energy axis. The target is made of a zincplated steel and emits several fluorescent lines.
The experiments P6.3.5.2 and P6.3.5.3 use the calibrated detector to record emission spectra of either a molybdenum anode or a copper anode. The resulting spectrum shows the characteristic lines of the anode material and the bremsstrahlung continuum.
The experiment P6.3.5.4 demonstrates differences in the characteristic fluorescent K-lines (transitions to K-shell) within the X-ray spectra of different elements. These are used to confirm Moseley's law and show aspects of material analysis.
The experiment P6.3.5.5 shows similar characteristic fluorescent L-lines for heavier elements, demonstrating the X-ray emission from transitions to the L-shell.
In the experiment P6.3.5.6 using the X-ray energy detector in Bragg geometry it is possible to observe different X -ray energies simultaneously, because Bragg condition is fulfilled for different orders.

STRUCTURE OF X-RAY SPECTRUMS

P6.3.6.1

Fine structure of the characteristic X-ray radiation of a molybdenum anode

P6.3.6.2

Fine structure of the characteristic X-ray radiation of a copper anode

P6.3.6.3

Fine structure of the characteristic X-ray radiation of an iron anode

P6.3.6.4

Fine structure of the characteristic X-ray radiation of a silver anode

P6.3.6.5

Fine structure of the characteristic X-ray radiation of a tungsten anode

P6.3.6.6

Determining the binding energy of individual subshells by selective excitation

P6.3.6.7

Fine structure of the characteristic X-ray radiation of a gold anode

Fine structure of the characteristic X-ray radiation of a molybdenum anode (P6.3.6.1)

Cat. No.	Description	E. $\dot{0}$ $\dot{0}$ 0	$\begin{aligned} & \underset{\sim}{0} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { m } \\ & 0 \\ & \text { m } \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \dot{0} \\ & \dot{\sim} \\ & \dot{Q} \end{aligned}$	0 1 0 0 0 0 0	¢ 0 n 0 0
554800	X-ray apparatus	1	1	1	1	1	1
554861	X-ray tube, Mo	1					
554831	Goniometer	1	1	1	1	1	1
55478	NaCl crystal for Bragg reflection	1			1		
55901	End-window counter with cable for $\alpha, \beta, \gamma \in \mathbb{X}$-rays	1	1	1	1	1	1
554862	X-ray tube, Cu		1				
554791	KBr crystal for Bragg reflection		1				
554863	X-ray tube, Fe			1			
55477	LiF crystal for Bragg reflection			1		1	1
554865	X-ray tube, Ag				1		
554864	X-ray tube, W					1	
554866	X-ray tube, Au						1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1	1	1	1	1

The structure and fine-structure of X-ray spectra gives valuable Information on the position of the atomic energy levels. The systematics of X -ray transitions are presented. Starting with molybdenum and completed with other anode materials like copper and iron the K-shell transitions of light and medium elements are investigated.
In contrast to these materials the heavy elements like tungsten show characteristic emission from the L-shell with a lot of details, because the lower level of the transition consits of several sublevels which can also be selectively excited. The experiment P6.3.6.1 investigates the X-ray spectrum of a molybdenum anode and the fine structure of the K_{α} line.
The experiments P6.3.6.2 and P6.3.6.3 observe the low-energy characteristic radiation from a copper or iron anode and the fine structure of the K_{α} line.
The experiment P6.3.6.4 observes the high-energy characteristic radiation of silver and the fine structure splitting due to spin-orbit coupling.
The experiment P6.3.6.5 demonstrates the fine structure of the tungsten L-lines. Due to the splitting of the energy levels there are approximately 11 transitions visible ($\left.L_{\alpha} 1-2, L_{\beta} 1-4, L_{\gamma} 1-3, L_{1}, L_{v}\right)$, which can be used to evaluate the position of the energy levels and to demonstrate allowed and forbidden transitions.
In addition to experiment P6.3.6.5, the experiment P6.3.6.6 measures directly the splitting of the L-shell. At a low acceleration voltage only the L3 level can be exited, with raising voltages transitions to L2 and later L1 become observable. The absolute binding energies of the L-sublevels can be measured directly.
The experiment P6.3.6.7 demonstrates the fine structure of the gold L-lines. Due to the splitting of the energy levels there are approximately 10 transitions visible ($L_{\alpha} 1-2, L_{\beta} 1-4, L_{\gamma} 1-3, L_{1}, L_{v}$), which can be used to evaluate the position of the energy levels and to demonstrate allowed and forbidden transitions.

[^17]
STRUCTURE OF X-RAY SPECTRUMS

P6.3.6.11

High-resolution fine structure of the characteristic X-ray radiation of a molybdenum anode

P6.3.6.12

High-resolution fine structure of the characteristic X-ray radiation of a copper anode

P6.3.6. 13
High-resolution fine structure of the characteristic X-ray radiation of an iron anode

P6.3.6.14

High-resolution fine structure of the characteristic X-ray radiation of a silver anode

P6.3.6. 15

High-resolution fine structure of the characteristic X-ray radiation of a tungsten anode

P6.3.6.17
High-resolution fine structure of the characteristic X-ray radiation of a gold anode

High-resolution fine structure of the characteristic X-ray radiation of a molybdenum anode (P6.3.6.11)

Cat. No.	Description	F b ² 0 0	N \vdots N 0 0	m ம n 0 0	$\begin{aligned} & \pm \\ & \dot{6} \\ & \dot{m} \\ & 0 \end{aligned}$		$\begin{aligned} & N \\ & 0 \\ & \\ & 0 \\ & 0 \end{aligned}$
554800	X-ray apparatus	1	1	1	1	1	1
554861	X-ray tube, Mo	1					
554831	Goniometer	1	1	1	1	1	1
554835	HD Accessory, X-ray	1	1	1	1	1	1
55478	NaCl crystal for Bragg reflection	1			1		
55901	End-window counter with cable for $\alpha, \beta, \gamma \in \mathbb{X}$-rays	1	1	1	1	1	1
554862	X-ray tube, Cu		1				
55477	LiF crystal for Bragg reflection		1	1		1	1
554863	X-ray tube, Fe			1			
554865	X-ray tube, Ag				1		
554864	X-ray tube, W					1	
554866	X-ray tube, Au						1
	additionally required: PC with Windows XP/Vista/7/8/10 ($\times 86$ or $\times 64$)	1	1	1	1	1	1

The structure and fine-structure of X-ray spectra gives valuable Information on the position of the atomic energy levels. The systematics of X -ray transitions are presented. Starting with molybdenum and completed with other anode materials like copper and iron the K-shell transitions of light and medium elements are investigated.
In contrast to these materials the heavy elements like tungsten show characteristic emission from the L-shell with a lot of details, because the lower level of the transition consits of several sublevels which can also be selectively excited. The resolution of the X-ray spectra can be improved by using narrower slits in the collimator and detector. In conjunction with a goniometer that can handle smaller step sizes, the fine structure of the X-ray spectra can be resolved in a lower diffraction order, which saves time and enables such measurements in a given time.
The use of slits of different widths also allows investigations of the intensity of the atomic line radiation compared to the intensity of the continuum due to bremsstrahlung of the electrons.
The experiment P6.3.6.11 investigates the high-resolution X-ray spectrum of a molybdenum anode and the fine structure of the K_{a} line.
The experiments P6.3.6.12 and P6.3.6.13 observe the low-energy characteristic radiation from a copper or iron anode and the high-resolution fine structure of the K_{α} line.
The experiment P6.3.6.14 observes the high-energy characteristic radiation of silver and the high-resolution fine structure splitting due to spin-orbit coupling. The experiment P6.3.6.15 demonstrates the high-resolution fine structure of the tungsten L-lines. Due to the splitting of the energy levels there are approximately 10 transitions visible ($\left.L_{\alpha} 1-2, L_{\beta} 1-5, L_{\gamma} 1-3\right)$, which can be used to evaluate the position of the energy levels and to demonstrate allowed and forbidden transitions.
The experiment P6.3.6.17 demonstrates the fine structure of the gold L-lines. Due to the splitting of the energy levels there are approximately 10 transitions visible ($\left.L_{\alpha} 1-2, L_{\beta} 1-4, L_{\gamma} 1-3, L_{1}, L_{v}\right)$, which can be used to evaluate the position of the energy levels and to demonstrate allowed and forbidden transitions.

High resolution Bragg spectrum of a gold anode (P6.3.6.17)

COMPTON EFFECT AT X-RAYS

P6.3.7.1
Compton effect: verifying the energy loss of the scattered X -ray quantum

P6.3.7.2

Compton effect: Measurement the energy of the scattered photons as a function of the scattering angle

Compton effect: Measurement the energy of the scattered photons as a function of the scattering angle (P6.3.7.2)

Cat. No.	Description	- N ¢ Q	N N én Q
554800	X-ray apparatus	1	1
554861	X-ray tube, Mo	1	1
554831	Goniometer	1	1
55901	End-window counter with cable for α, β, γ and X -rays	1	
554836	Compton accessory, X-ray	1	
5548371	Compton accessory, X-ray II		1
559938	X-ray energy detector		1
524013	Sensor-CASSY 2		1
524058	MCA box		1
524220	CASSY Lab 2		1
50102	BNC cable, 1 m		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)		1

Energy shift of the scattered X-rays at different angeles (P6.3.7.2)

At a time (early 1920's) when the particle nature of light (photons) suggested by the photoelectric effect was still being debated, the Compton experiment, the scattering of X-rays on weakly bound electrons, in 1923 gave another evidence of particle-like behaviour of X-rays in this process. Compton investigated the scattering of X-rays passing through matter. According to classical physics the frequency of the radiation should not be changed by the scattering process. However, A. H. Compton observed a frequency change for scattered X-rays. He interpreted this in the particle model as a collision of the X-ray photon and an electron of the scattering material. Assuming total energy and momentum to be conserved, energy is transferred from the photon to the electron, so the energy of the scattered photon depends on the scattering angle ϑ.
The experiment P6.3.7.1 verifies the Compton shift using the endwindow counter. The change of frequency or wavelength due to the scattering process is apparent as a change of the attenuation of an absorber, which is placed either in front of or behind the scattering body.
The object of the experiment P6.3.7.2 is to record directly the energy spectra of the scattered X -rays with the X -ray energy detector as a function of the scattering angle ϑ. The energy $E(\vartheta)$ of the scattered photons at different angles is determined and compared with the calculated energy obtained from conservation of energy and momentum by using the relativistic expression for the energy:

$$
E(\vartheta)=\frac{E_{0}}{1+\frac{E_{0}}{m \cdot c^{2}} \cdot(1-\cos \vartheta)}
$$

E_{0} : energy of the photon before the collision
m : mass of electron at rest
c : velocity of light

X-RAY TOMOGRAPHY

P6.3.8.1
Measurement and presentation of a computed tomogram with the computed tomography module

P6.3.8.2

Computed tomography of simple geometrical objects with the computed tomography module

P6.3.8.3
Medical basics of computed tomography with the computed tomography module

P6.3.8.4

Determining absorption coefficients and Hounsfield units with computed tomography with the computed tomography module

P6.3.8.5

Computed tomography of biological samples with the computed tomography module

This small frog has a length of about 3.5 cm and was econstructed with a resolution of 0.3 mm (P6.3.8.5).

In 1972 the first computed tomographic scanner was built by Godfrey Hounsfield who, together with Allan Cormack, was awarded the Nobel Prize in Physiology or Medicine in 1979. The basic idea of computed tomography (CT) is the illumination of an object by X-rays from numerous different angles. Our educational X-ray apparatus allows the illumination of objects by X -rays. The resulting 2D-projections are visualised at the fluorescence screen or with the X -ray image sensor.
By turning an object using the built-in goniometer of the X-ray apparatus, and recording the 2D-projections from each angular step, the computer can reconstruct the object illuminated by X -rays. Our e-learning software visualises the back projection (necessary for reconstructing the computed tomography) concurrently with the scanning process. The 3D-model is then displayed on the PC screen.
Experiment P6.3.8.1 discusses the basics of computed tomography. The computed tomographies of simple geometrical objects are recorded and displayed.
Experiment P6.3.8.2 shows the CT of simple geometrical objects to demonstrate the basic properties and the resolution power of tomography.
Experiment P6.3.8.3 shows the CT of medical related objects to demonstrate the basic properties of tomography and to investigate possible problems with artefacts and image errors.
Experiment P6.3.8.4 analyses the absorption coefficient of water inside a plastic body to demonstrate the capabilities of CT in distinguishing different kinds of tissues and to calibrate Hounsfield units and it discusses hardening effects of the X-rays.
Experiment P6.3.8.5 analyses the CT of real biological specimens and applies to the results of the previous experiments.

Computed tomography of a Lego figure (P6.3.8.2)

X-RAY TOMOGRAPHY

P6.3.8.11

Measurement and presentation of a computed tomogram with the X-ray image sensor

P6.3.8.12

Computed tomography of simple geometrical objects with
the X-ray image sensor

P6.3.8.13

Medical basics of
computed tomography with
the X-ray image sensor

P6.3.8.14

Determining absorption coefficients and Hounsfield units with computed tomography with the X-ray image sensor

P6.3.8.15
Computed tomography of biological samples with the X-ray image sensor

Measurement and presentation of a computed tomogram with the X-ray image sensor (P6.3.8.11)

Cat. No.	Description	F		¢
554800	X-ray apparatus	1	1	1
554831	Goniometer	1	1	1
554866	X-ray tube, Au	1	1	1
554820 P 1	Computed Tomography Pro package	1	1	1
554823	Phantom, 3D		1	
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1	1

Experiment P6.3.8.11 discusses the basics of computed tomography. The computed tomographies of simple geometrical objects are recorded and displayed.
Experiment P6.3.8.12 shows the CT of simple geometrical objects to demonstrate the basic properties and the resolution power of tomography.
Experiment P6.3.8.13 shows the CT of medical related objects to demonstrate the basic properties of tomography and to investigate possible problems with artefacts and image errors.
Experiment P6.3.8.14 analyses the absorption coefficient of water inside a plastic body to demonstrate the capabilities of CT in distinguishing different kinds of tissues and to calibrate Hounsfield units and it discusses hardening effects of the X -rays.
Experiment P6.3.8.15 analyses the CT of real biological specimens and applies to the results of the previous experiments.

The same frog as shown on the previous page, but using the PRO image sensor the resolution is improved to 0.05 mm and the noise is significantly reduced (P6.3.8.15).

High-resolution computed tomograms of a snail shell

DETECTING RADIOACTIVITY

P6.4.1.4
Recording the characteristic of a Geiger-Müller (end-window) counter tube

Recording the characteristic of a Geiger-Müller (end-window) counter tube (P6.4.1.4)

		-
Cat. No.	Description	-
55901	End-window counter with cable for $\alpha, \beta, \gamma</$ FONT> and X-rays	1
559436	Ra 226 preparation, 5 kBq	1
524005 W	Mobile-CASSY 2 WiFi	1
524440	GM adapter M	1
59013	Stand rod with bore holes	1
59121	Clip plug, large	1
53216	Connecting rod	1
30011	Saddle base	2

In 1895, H. Becquerel discovered radioactivity while investigating uranium salts. He found that these emitted a radiation which was capable of fogging lightsensitive photographic plates even through black paper. He also discovered that this radiation ionizes air and that it can be identified by this ionizing effect.
The experiment P6.4.1.4 records the count rate vs voltage characteristic of a Geiger-Müller counter tube. The count rate increases with the voltage for low voltage values, before reaching a saturation value (Plateau) which depends on the intensity or distance of the source.

Characteristics of the counter tube (counting rate R as a function of the counter tube voltage U)
at three different distances d between preparation and counter tube (P6.4.1.4).

POISSON DISTRIBUTION

P6.4.2.1

Statistical variations in determining counting rates

Statistical variations in determining counting rates (P6.4.2.1)

Cat. No.	Description	N N ¢ Q
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
5240331	Geiger-Müller counter tube S	1
559835	Radioactive preparations, set of 3	1
59121	Clip plug, large	1
59002	Small clip plug	1
53216	Connecting rod	2
30011	Saddle base	1 *
58707	Tweeter	1^{*}
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	1^{*}
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1

* additionally recommended

For each individual particle in a radioactive source, chance determines whether it will decay. The probability that any particular particle will decay in this time period is extremely low. The number of particles n which will decay over time Δt thus shows a Poisson distribution around the mean value μ. In other words, the probability that n decays will occur over a given time period Δt is

$$
W_{\mu}(n)=\frac{\mu^{n}}{n!} e^{-\mu}
$$

μ is proportional to the size of the preparation and the time Δt, and inversely proportional to the half-life $T_{1 / 2}$ of the radioactive decay.
Using the CASSY system, the experiment P6.4.2.1 determines multiple pulse counts n triggered in a Geiger-Müller counter tube by radioactive radiation over a selectable gate time Δt. After a total of N counting runs, the frequencies $h(n)$ are determined at which precisely n pulses were counted, and displayed as histograms. For comparision, the evaluation program calculates the mean value μ and the standard deviation

$$
\sigma=\sqrt{\mu}
$$

of the measured intensity distribution $h(n)$ as well as the Poisson distribution $w_{\mu}(N)$. For higher mean values μ the Poisson distribution develops into a Gaussian distribution.

[^18]
RADIOACTIVE DECAY AND HALF-LIFE

P6.4.3.3

Determining the half-life of Cs-137-Point-by-point recording of a decay curve

P6.4.3.4

Determination of half-life of Cs-137 - Recording and evaluating the decay and production curve with CASSY

Determination of half-life of Cs-137 - Recording and evaluating the decay and production curve with CASSY (P6.4.3.4)

Cat. No.	Description		+ + + 0 0
55981502	Cs/Ba 137 m isotope generator 370 kBq	1	1
55901	End-window counter with cable for α, β, γ and X -rays	1	
524440	GM adapter M	1	
524005 W	Mobile-CASSY 2 WiFi	1	
30002	Stand base, V-shaped, small	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1
30101	Leybold multiclamp	2	4
666555	Universal clamp 0...80 mm	2	4
664043	Test tubes, Fiolax, 16 $\times 160 \mathrm{~mm}$, set of 10	1	1
664103	Beaker, DURAN, 250 ml , squat	1	1
524013	Sensor-CASSY 2		1
524220	CASSY Lab 2		1
5240331	Geiger-Müller counter tube S		2
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)		1

For the activity of a radioactive sample, we can say:

$$
A(t)=\left|\frac{d N}{d t}\right|
$$

Here, N is the number of radioactive nuclei at time t. It is not possible to predict when an individual atomic nucleus will decay. However, from the fact that all nuclei decay with the same probability, it follows that over the time interval $d t_{\text {, }}$ the number of radioactive nuclei will decrease by

$$
\begin{aligned}
& d N=-\lambda \cdot N \cdot d t \\
& \lambda: \text { decay constant }
\end{aligned}
$$

Thus, for the number N, the law of radioactive decay applies:

$$
\begin{aligned}
& N(t)=N_{0} \cdot e^{-\lambda \cdot t} \\
& N_{0}: \text { number of radioactive nuclei at time } t=0
\end{aligned}
$$

Among other things, this law states that after the half-life

$$
t_{1 / 2}=\frac{\ln 2}{\lambda}
$$

the number of radioactive nuclei will be reduced by half.
To determine the half-life of $\mathrm{Ba}-137 \mathrm{~m}$ in the experiment P6.4.3.3, a plastic bottle with $\mathrm{Cs}-137$ stored at salt is used. The metastable isotop $\mathrm{Ba}-137 \mathrm{~m}$ arising from the β-decay is released by an eluation solution. The half-time amounts to 2.6 minutes approx.

In the experiment P6.4.3.4, a plastic bottle with radioactive Cs -137 is used. The $\mathrm{Cs}-137$ continually decays into $\mathrm{Ba}-137 \mathrm{~m}$. The metastable isotop $\mathrm{Ba}-137 \mathrm{~m}$ arising from the β-decay is selectively washed out by a syringe with eluation solution. The half-time amounts to 2.6 minutes approx.
Using two counter tubes, we can first observe the eluation transfer of radioactive $\mathrm{Ba}-137 \mathrm{~m}$ out of the plastic bottle into the test tube. Inside the test tube, the Ba-137m will decay exponentially over time within a few minutes, at the same time, the activity of $\mathrm{Ba}-137 \mathrm{~m}$ inside the plastic bottle will build up again. In the end, there is again a dynamic equilibrium of decay and production in the plastic bottle.

Decaying radioactivity after elution of $\mathrm{Ba}-137 \mathrm{~m}$ (P6.4.3.4)

Confirming the inverse-square law of distance for β radiation (P 6.4 .4 .3)

ATTENUATION OF $\alpha-$, β - AND γ RADIATION

P6.4.4.2
Attenuation of β radiation when passing through matter

P6.4.4.3
Confirming the inverse-square law of distance for β radiation

P6.4.4.4
Absorption of γ radiation through matter

Cat. No.	Description	$\begin{aligned} & \underset{\sim}{+} \\ & \dot{子} \\ & \dot{\sim} \end{aligned}$	n + + $\dot{+}$ 0	+ + + 0 0
559835	Radioactive preparations, set of 3	1	1	
55901	End-window counter with cable for α, β, γ and X -rays	1	1	1
575471	Counter S	1	1	1
55918	Holder with absorber foils	1		
59002	Small clip plug	1	1	
59121	Clip plug, large	1	1	
53216	Connecting rod	2	2	
30011	Saddle base	2	2	
46097	Metal rule, 0.5 m		1	
559845	Mixed nuclide preparation, α, β, γ			1
559855	Co-60 preparation, 74 kBq			1
686651	RAD experimental board			1
686653	Holders for counter tube and preparation			1
686657	Plastic clamps, span 1.2 cm , set of 3			1
686660	Frame and 9 slides, set of			1
686661	Lead slides, $50 \times 50 \times 2 \mathrm{~mm}$, set of 8			1

High-energy α and β particles release only a part of their energy when they collide with an absorber atom. For this reason, many collisions are required to brake a particle completely. Its range R

$$
R \propto \frac{E_{0}^{2}}{n \cdot Z}
$$

depends on the initial energy E_{0}, the number density n and the atomic number Z of the absorber atoms. Low-energy α and β particles or γ radiation are braked to a certain fraction when passing through a specific absorber density $d x$, or are absorbed or scattered and thus disappear from the beam. As a result, the radiation intensity / decreases exponentially with the absorption distance x

$$
I=I_{0} \cdot e^{-\mu \cdot x} \quad \mu: \text { attenuation coefficient }
$$

The experiment P6.4.4.2 examines the attenuation of β radiation from $\mathrm{Sr}-90$ in aluminum as a function of the absorber thickness d. This experiment shows an exponential decrease in the intensity.
As a comparison, the absorber is removed in the experiment P6.4.4.3 and the distance between the β preparation and the counter tube is varied. As one might expect for a point-shaped radiation source, the following is a good approximation for the intensity:

$$
I(d) \propto \frac{1}{d^{2}}
$$

The experiment P6.4.4.4 examines the attenuation of γ radiation in matter. Here too, the decrease in intensity is a close approximation of an exponential function. The attenuation coefficient μ depends on the absorber material and the γ energy.

DEMONSTRATING PATHS OF PARTICLES

P6.5.1.1
Demonstrating the tracks of α particles in a Wilson cloud chamber

Demonstrating the tracks of α particles in a Wilson cloud chamber (P6.5.1.1)

Cat. No.	Description	F-
55957	Wilson cloud chamber	1
559596	Ra-226 radium source for Wilson chamber	1
45060	Lamp housing with cable	1
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}$, E14, set of 2	1
46020	Condenser with diaphragm holder	1
52227	Power supply, 450 V	1
521210	Transformer 6/12 V	1
30106	Bench clamp	1
30011	Saddle base	1
50146	Connecting leads 19 A, 100 cm , red/blue, pair	1
6719720	Ethanol, denaturated, 11	1

In a Wilson cloud chamber, a saturated mixture of air, water and alcohol vapor is briefly caused to assume a supersaturated state due to adiabatic expansion. The supersaturated vapor condenses rapidly around condensation seeds to form tiny mist droplets. lons, which are formed e.g. through collisions of α particles and gas molecules in the cloud chamber, make particularly efficient condensations seeds.

In the experiment P6.5.1.1, the tracks of α particles are observed in a Wilson cloud chamber. Each time the pump is vigorously pressed, these tracks are visible as traces of droplets in oblique light for one to two seconds. An electric field in the chamber clears the space of residual ions.

Droplet traces in the Wilson cloud chamber (P6.5.1.1)

Rutherford scattering: measuring the scattering rate as a function of the scattering angle and the atomic number (P6.5.2.1)

RUTHERFORD SCATTERING

P6.5.2.1
Rutherford scattering: measuring the scattering rate as a function of the scattering angle and the atomic number

Cat. No.	Description	\square \cdots 1 0 0
$559820 Z$	Am-241 preparation, 330 kBq	1
55956	Rutherford scattering chamber	1
55952	Aluminium foil in frame	1
559931	Discriminator preamplifier	1
562791	Plug-in power supply, 12 V AC	1
575471	Counter S	1
37873	Rotary-vane vacuum pump S 1.5	1
378005	T-piece, DN 16 KF	1
378040	Centering ring (adapter) DN 10/16	1
378045	Centering ring DN 16 KF	1
378050	Clamping ring, DN 10/16 KF	2
378771	Air inlet valve, DN 10 KF	1
378031	Hose nozzle, DN 16 KF	1
667186	Vacuum rubber tubing, 8 mm diam.	1
50101	BNC cable, 0.25 m	1
57524	Screened cable, BNC/4 mm	1

The fact that an atom is "mostly empty space" was confirmed by Rutherford, Geiger and Marsden in one of the most significant experiments in the history of physics. They caused a parallel beam of α particles to fall on an extremely thin sheet of gold leaf. They discovered that most of the α particles passed through the gold leaf virtually without deflection, and that only a few were deflected to a greater degree. From this, they concluded that atoms consist of a virtually massless extended shell, and a practically point-shaped massive nucleus.
The experiment P6.5.2.1 reproduces these observations using an Am-241 preparation in a vacuum chamber. The scattering rate $N(\vartheta)$ is measured as a function of the scattering angle ϑ using a semiconductor detector. As scattering materials, a sheet of gold leaf $(Z=80)$ and aluminum foil $(Z=13)$ are provided. The scattering rate confirms the relationship

$$
N(\vartheta) \propto \frac{1}{\sin ^{4} \frac{\vartheta}{2}} \text { and } N(\vartheta) \propto Z^{2}
$$

Scattering rate N as a function of the scattering angle ϑ (P6.5.2.1)

NUCLEAR MAGNETIC RESONANCE

P6.5.3. 1
Nuclear magnetic resonance in polystyrene, glycerin and Teflon

Nuclear magnetic resonance in polystyrene, glycerin and Teflon (P6.5.3.1)

Cat. No.	Description	\bar{m} Le 0 0
514602	NMR supply unit	1
514606	NMR probe	1
56211	U-core with yoke	1
562131	Coil, 480 turns, 10 A	2
521546	DC Power Supply 0...16 V/0... 5 A	1
575304	Digital storage oscilloscope 70 MHz two-channel	1
50102	BNC cable, 1 m	2
500622	Safety connecting lead 50 cm , blue	1
500641	Safety connecting lead, 100 cm , red	1
500642	Safety connecting lead, 100 cm , blue	1
524005 W	Mobile-CASSY 2 WiFi	1^{*}
5240381	Combi B sensor S	1^{*}
50111	Extension cable, 15 pin	1^{*}

* additionally recommended

The magnetic moment of the nucleus entailed by the nuclear spin / assumes the energy states

$$
\begin{aligned}
& E_{\mathrm{m}}=-g_{\mathrm{l}} \cdot \mu_{\mathrm{K}} \cdot m \cdot B \text { with } m=-I,-I+1, \ldots, I \\
& \mu_{\mathrm{K}}=5.051 \cdot 10^{-27} \frac{\mathrm{~J}}{\mathrm{~T}}: \text { nuclear magneton } \\
& g_{\mathrm{l}}: g \text { factor of nucleus }
\end{aligned}
$$

in a magnetic field B. When a high-frequency magnetic field with the frequency v is applied perpendicularly to the first magnetic field, it excites transitions between the adjacent energy states when these fulfill the resonance condition

$$
h \cdot v=E_{m+1}-E_{m}
$$

h : Planck's constant
This fact is the basis for nuclear magnetic resonance, in which the resonance signal is detected using radio-frequency technology. For example, in a hydrogen nucleus the resonance frequency in a magnetic field of 1 T is about 42.5 MHz . The precise value depends on the chemical environment of the hydrogen atom, as in addition to the external magnetic field B the local internal field generated by atoms and nuclei in the near vicinity also acts on the hydrogen nucleus. The width of the resonance signal also depends on the structure of the substance under study.
The experiment P6.5.3.1 verifies nuclear magnetic resonance in polystyrene, glycerine and Teflon. The evaluation focuses on the position, width and intensity of the resonance lines.

Additionally, the relaxation time of the spin system can be observed by a beat frequency mesurement.

α spectroscopy of radioactive samples (P6.5.4.1)

α SPECTROSCOPY

P6.5.4. 1
α spectroscopy of radioactive samples

P6.5.4.2

Determining the energy loss of α radiation in air

P6.5.4.3

Determining the energy loss of α radiation in aluminum and in gold

P6.5.4.4
Determining age using a Ra-226 sample

P6.5.4.5
Fine structure of Am-241 α radiation

Cat. No.	Description	$\begin{aligned} & \underset{+}{\underset{H}{4}} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{+}{+} \\ & \stackrel{\sim}{\circ} \\ & \dot{\circ} \end{aligned}$		$\begin{aligned} & \dot{+} \\ & \stackrel{\sim}{\circ} \\ & \dot{Q} \end{aligned}$	¢
559565	Alpha spectroscopy chamber	1	1	1	1	1
559921	Semiconductor detector	1	1	1	1	1
559825	Am-241 preparation, open, 3.7 kBq	1	1	1		1
559436	Ra 226 preparation, 5 kBq	1		1	1	
524013	Sensor-CASSY 2	1	1	1	1	1
524220	CASSY Lab 2	1	1	1	1	1
524058	MCA box	1	1	1	1	1
559931	Discriminator preamplifier	1	1	1	1	1
50116	Multi-core cable, 6-pole, 1.5 m	1	1	1	1	1
50102	BNC cable, 1 m	1	1	1	1	1
50101	BNC cable, 0.25 m	1	1	1	1	1
37873	Rotary-vane vacuum pump S 1.5	1	1	1	1	1
378005	T-piece, DN 16 KF	1		1	1	1
378040	Centering ring (adapter) DN 10/16	1		1	1	1
378045	Centering ring DN 16 KF	1	3	1	1	1
378050	Clamping ring, DN 10/16 KF	2	3	2	2	2
378771	Air inlet valve, DN 10 KF	1		1	1	1
378031	Hose nozzle, DN 16 KF	1	1	1	1	1
667186	Vacuum rubber tubing, 8 mm diam.	1	1	1	1	1
575302	Oscill loscope 30 MHz , digital, PT1265	1^{*}				1^{*}
378015	Cross piece, DN 16 KF		1			
378776	Variable leak valve, DN 16 KF		1			
378510	Pointer manometer, DN 16 KF		1			
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$		1			
559521	Gold and aluminium foil in holder			1		
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1	1	1	1

[^19]Up until about 1930, the energy of α rays was characterized in terms of their range in air. For example, a particle of 5.3 MeV (Po-210) has a range of 3.84 cm . Today, α energy spectra can be studied more precisely using semiconductor detectors. These detect discrete lines which correspond to the discrete excitation levels of the emitting nuclei.
The aim of the experiment P6.5.4.1 is to record and compare the α energy spectra of the two standard preparations Am-241 and Ra-226. To improve the measuring accuracy, the measurement is conducted in a vacuum chamber.
In the experiment P6.5.4.2, the energy E of α particles is measured as a function of the air pressure p in the vacuum chamber. The measurement data is used to determine the energy per unit of distance $d E / d x$ which the α particles lose in the air. Here,

$$
\begin{aligned}
& x=\frac{p}{p_{0}} \cdot x_{0} \\
& x_{0}: \text { actual distance } \\
& p_{0}: \text { standard pressure }
\end{aligned}
$$

is the apparent distance between the preparation and the detector.
The experiment P6.5.4.3 determines the amount of energy of α particles lost per unit of distance in gold and aluminum as the quotient of the change in the energy ΔE and the thickness Δx of the metal foils.
In the experiment P6.5.4.4, the individual values of the decay chain of Ra-226 leading to the α energy spectrum are analyzed to determine the age of the Ra-226 preparation used here. The activities A_{1} and A_{2} of the decay chain "preceding" and "following" the longer-life isotope $\mathrm{Pb}-210$ are used to determine the age of the sample from the relationship

$$
\begin{aligned}
& A_{2}=A_{1} \cdot\left(1-e^{-\frac{T}{\tau}}\right) \\
& \tau=32.2 \text { a: liftime of } \mathrm{Pb}-210
\end{aligned}
$$

The aim of the experiment P6.5.4.5 is to record the fine structure in the α spectrum of Am-241. An alpha decay can end in several excited states of the daughter nucleus, revealing nuclear excitation levels of the nucleus. Experimentally, this can be recorded using an unsealed radioactive source.

γ SPECTROSCOPY

P6.5.5. 1

Detecting γ radiation with a scintillation counter
P6.5.5.2
Recording and calibrating a γ spectrum

P6.5.5.3

Absorption of γ radiation
P6.5.5.4
Identifying and determining the activity of radioactive samples
P6.5.5.5
Recording a β spectrum with a scintillation counter

P6.5.5.6
Coincidence and $\gamma-\gamma$ angular correlation in positron decay
P6.5.5.7
Coincidence at γ decay of cobalt

Absorption of γ radiation (P6.5.5.3)

Cat. No.	Description	$\begin{aligned} & \text { Fi } \\ & \text { مٌ } \\ & \dot{Q} \end{aligned}$	N 1 0 0 0	m 1 1 0 0 0	$\begin{aligned} & \dot{+} \\ & 10 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 10 10 0 0	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { H } \\ & 0 \\ & 0 \end{aligned}$
559901	Scintillation counter	1	1	1	1	1	2	2
559912	Detector output stage	1	1	1	1	1	2	2
52168	High-voltage power supply, 1.5 kV	1	1	1	1	1	2	2
524013	Sensor-CASSY 2	1	1	1	1	1	1	1
524058	MCA box	1	1	1	1	1	2	2
524220	CASSY Lab 2	1	1	1	1	1	1	1
30042	Stand rod, $47 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1	1		1	1	1
30101	Leybold multiclamp	1	1	1		1	1	1
666555	Universal clamp 0... 80 mm	1	1	1		1	1	1
575302	Oscilloscope 30 MHz , digital, PT1265	1^{*}						
50102	BNC cable, 1 m	1^{*}						
55994	Absorbers and targets, set			1		1		
6725210	Potassium chloride, 250 g				4			
55988	Marinelli beaker				2			
55989	Scintillator shielding				1	1		
559835	Radioactive preparations, set of 3		1	1		1		
559845	Mixed nuclide preparation, α, β, γ	1					1	
559855	Co-60 preparation, 74 kBq		1^{*}	1^{*}				1
559865	$\mathrm{Na}-22$ preparation, 74 kBq		1				1	
559885	Calibrating preparation CS-137, 5 KBq				1			
559891	Socket for scintillator shielding	1	1	1	1	1	1	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1	1	1	1	1	1	1

* additionally recommended
γ-spectra recorded with the scintillation counter allow to identify different nuclei and give insight into fundamental aspects of nuclear physics and the interaction of radiation with matter, like compton scattering or photoeffect.
In the experiment P6.5.5.1, the output pulses of the scintillation counter are investigated using the oscilloscope and the MCA-Box with CASSY. The total absorption peak and the Compton distribution are identified in the pulseamplitude distribution generated with monoenergetic γ radiation.
The aim of the experiment P6.5.5.2 is to record and compare the γ energy spectra of standard preparations. The total absorption peaks are used to calibrate the energy of the scintillation counter and to identify the preparations. The experiment P6.5.5.3 examines the attenuation of γ radiation in various absorbers. The aim here is to show how the attenuation coefficient μ depends on the absorber material and the γ energy.
A Marinelli beaker is used in the experiment P6.5.5.4 for quantitative measurements of weak radioactive samples. This apparatus encloses the scintillator crystal virtually completely, ensuring a defined measurement geometry. Lead shielding considerably reduces the interfering background from the laboratory environment.
The experiment $\operatorname{P6.5} .5 .5$ records the continuous spectrum of a pure β emitter (Sr-90/Y-90) using the scintillation counter. To determine the energy loss $d E / d x$ of the β particles in aluminum, aluminium absorbers of various thicknesses x are placed in the beam path between the preparation and the detector.
In the experiment P6.5.5.6, the spatial correlation of the two γ quanta in electronpositron pair annihilation is demonstrated. The conservation of momentum requires emission of the two quanta at an angle of 180°. Selective measurement of a coincidence spectrum leads to the suppression of non-correlated lines.
The experiment P6.5.5.7 shows the decay of Cobalt-60 in detail and proves the existence of a decay chain by coincidence measurements.

COMPTON EFFECT

P6.5.6.1
Quantitative observation of the Compton effect

Cat. No.	Description	$\overline{0}$ 0 0 0
559800	Equipment set for Compton scattering	1
559809	Cs-137 preparation, 3.7 MBq	1
559845	Mixed nuclide preparation, α, β, γ	1
559901	Scintillation counter	1
559912	Detector output stage	1
52168	High-voltage power supply, 1.5 kV	1
524013	Sensor-CASSY 2	1
524058	MCA box	1
524220	CASSY Lab 2	1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

Energy shift of the Cs-137 line when scattered in different directions (P6.5.6.1)

In the Compton effect, a photon transfers a part of its energy E_{0} and its linear momentum

$$
\begin{aligned}
& p_{0}=\frac{E_{0}}{c} \\
& c: \text { speed of light in a vacuum }
\end{aligned}
$$

to a free electron by means of elastic collision. Here, the laws of conservation of energy and momentum apply just as for the collision of two bodies in mechanics. The energy

$$
E(\vartheta)=\frac{E_{0}}{1+\frac{E_{0}}{m \cdot c^{2}} \cdot(1-\cos \vartheta)}
$$

m : mass of electron at rest
and the linear momentum

$$
p=\frac{E}{c}
$$

of the scattered photon depend on the scattering angle ϑ. The effective crosssection depends on the scattering angle and is described by the Klein-Nishina formula:

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\frac{1}{2} \cdot r_{0}^{2} \cdot \frac{p^{2}}{p_{0}^{2}} \cdot\left(\frac{p_{0}}{p}+\frac{p}{p_{0}}-\sin ^{2} \vartheta\right) \\
& r_{0}: 2.5 \cdot 10^{-15} \mathrm{~m}: \text { classic electron radius }
\end{aligned}
$$

In the experiment P6.5.6.1, the Compton scattering of γ quanta with the energy $E_{0}=667 \mathrm{keV}$ at the quasi-free electrons of an aluminium scattering body is investigated. For each scattering angle ϑ, a calibrated scintillation counter records one γ spectrum with and one without aluminum scatterer as a function of the respective scattering angle. The further evaluation utilizes the total absorption peak of the differential spectrum. The position of this peak gives us the energy $E(\vartheta)$. Its integral counting rate $N(\vartheta)$ is compared with the calculated effective cross-section.

PROPERTIES OF RADIATION PARTICLES

P6.5.7.1
Deflection of beta radiation in a magnetic field

Deflection of beta radiation in a magnetic field (P6.5.7.1)

Cat. No.	Description	F 0 0
559835	Radioactive preparations, set of 3	1
55901	End-window counter with cable for α, β, γ and X -rays	1
575471	Counter S	1
LDS 00001	Stopwatch, digital	1
521391	AC/DC power supply 0... $24 \mathrm{~V} / 5 \mathrm{~A}$	1
56211	U-core with yoke	1
56213	Coil, 250 turns	2
56031	Bored pole pieces, pair	1
55923	Swivelling clamp	1
55918	Holder with absorber foils	1
30011	Saddle base	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm}$ Ø	1
30101	Leybold multiclamp	1
50125	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, red	1
50126	Connecting lead, $32 \mathrm{~A}, 50 \mathrm{~cm}$, blue	2
524005 W	Mobile-CASSY 2 WiFi	1^{*}
5240381	Combi B sensor S	1^{*}
50111	Extension cable, 15 pin	1^{*}

* additionally recommended

Historically, it was easy to see that there are different kinds of radioactive radiation. But to identify which particles were involved took some time. The behaviour of those particles in an magnetic field was and still is the most valuable tool to characterize charged particles.
In the experiment P6.5.7.1 β radiation passes through a magnetic field and the resulting angular distribution is recorded. From these data, the energy of the decay can be estimated.

QUANTUM OPTICS

P6.6.1.1
Quantum eraser

Quantum eraser (P6.6.1.1)

		-
Cat. No.	Description	\vdots
47340	Laser optics base plate	1
471830	He-Ne Laser, linearly polarised	1
473411	Laser mount	1
473421	Optics base	9
473431	Holder for beam divider	2
473432	Beam divider, 50%	2
473461	Planar mirror with fine adjustment	2
473471	Spherical lens, $\mathrm{f}=2.7$ mm	2
47349	Polarising filter for laser optics base plate	3
44153	Screen, translucent	2
30011	Saddle base	2
31102	Metal rule, 1 m	1

Quantum optics is a field of research in physics, dealing with the application of quantum mechanics to phenomena involving light and its interactions with matter.
A basic principle of quantum mechanics is complementarity: each quantummechanical object has both wave-like and particle-like properties. In the experiment P6.6.1.1 an analogue experiment to a quantum eraser is built up. It shows the complementarity of which-way information and interference.

QUANTUM PHYSICS

PARTICLES

P6.6.2.1
Detection of Muons

Detection of Muons (P6.6.2.1)

Cat. No.	Description	\bar{j} 0 0 0
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
524033	GM box	2
559012	Pancake GM counter tube	2
30011	Saddle base	1^{*}
58707	Tweeter	1^{*}
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	${ }^{*}$
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1

* additionally recommended

The origin of high-energy particles is not only from radioactive decay of unstable nuclei on earth, they can also be found in the cosmic radiation. Such particles are an interesting topic on their own.
Experiment P6.6.2.1 uses the coincidence detection of two GM detectors to identifiy natural muons passing through this muon telescope. The specific properties of the muons can be shown this way and recording the muon flux over the day shows their origin is related to the sun.

[^20]
P7 SOLID-STATE PHYSICS

P7.1 PROPERTIES OF CRYSTALS 233
P7.2 CONDUCTION PHENOMENA 236
P7.3 MAGNETISM 243
P7.5 APPLIED SOLID-STATE PHYSICS 245

P7 SOLID-STATE PHYSICS

P7.1 PROPERTIES OF CRYSTALS
$\begin{array}{llr}\text { P7.1.2 } & \text { X-ray scattering } & \text { 233-234 } \\ \text { P7.1.4 } & \text { Elastic and plastic deformation } & 235\end{array}$
P7.1.4 Elastic and plastic deformation

P7.2 CONDUCTION PHENOMENA

P7.2.1 Hall effect 236-237
P7.2.2 Electrical conductivity in solids 238
P7.2.3 Photoconductivity 239
P7.2.4 Luminescence 240
P7.2.5 Thermoelectricity 241
P7.2.6 Superconductivity 242

P7.3 MAGNETISM

P7.3.1 Dia-, para- and ferromagnetism 243
P7.3.2 Ferromagnetic hysteresis 244
P7.5 APPLIED SOLID-STATE PHYSICS
P7.5.1 X-ray fluorescence analysis 245

X-RAY SCATTERING

P7.1.2.1

Bragg reflection: determining the lattice constants of monocrystals

P7.1.2.2

Laue diagrams: investigating the lattice structure of monocrystals

P7.1.2.3

Debye-Scherrer photography: determining the lattice plane spacings of polycrystalline powder samples

P7.1.2.4

Debye-Scherrer Scan: determining the lattice plane spacings of polycrystalline powder samples

Laue diagrams: investigating the lattice structure of monocrystals (P7.1.2.2)

Cat. No.	Description		N N ¢ ล		+ $\underset{\sim}{\top}$
554800	X-ray apparatus	1	1	1	1
554861	X-ray tube, Mo	1	1	1	
554831	Goniometer	1			1
55901	End-window counter with cable for α, β, γ and X -rays	1			1
55477	LiF crystal for Bragg reflection	1			
55478	NaCl crystal for Bragg reflection	1			
554838	Film holder, X -ray		1	1	
554895	X-ray film		1	1	
55487	LiF crystal for Laue diagrams		1		
55488	NaCl crystal for Laue diagrams		1		
667091	Pestle 88 mm			1	1
667092	Mortar porcelain 70 mm Ø			1	1
666960	Powder spatula, stainless steel, 150 mm			1	1
31154	Precision vernier callipers			1	
6735700	Sodium chloride 250 g			1	1
6730520	Lithium fluoride, analytically pure, 10 g			1	1
554862	X-ray tube, Cu				1
554842	Crystal powder holder				1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1			1

X-rays are an essential tool to determine the structure of crystals. The lattice planes inside a crystal are identified by their Miller idices h, k, l and reflect the X-rays only if the Laue or Bragg conditions are fulfilled. The distribution of reflexes allows to calculate the lattice constant and crystal structure of the investigated crystal.
In the experiment P7.1.2.1, the Bragg reflection of Mo-Kadiation ($\lambda=71.080 \mathrm{pm}$) at NaCl and LiF monocrystals is used to determine the lattice constant. The K_{β} component of the X -ray radiation can be suppressed using a zirconium filter.
Laue diagrams from NaCl and LiF monocrystals are created in the experiment P7.1.2.2 using the bremsstrahlung of the X-ray apparatus as "white" X-radiation. The positions of the "multicolored" reflections on an X-ray film behind the crystal and their intensities can be used to determine the crystal structure and the lengths of the crystal axes through application of the Laue condition.
In the experiment P7.1.2.3, Debye-Scherrer photographs are produced by irradiating samples of a fine crystal powder with $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation. Some of the randomly oriented crystallites conform to the Bragg condition and diffract X-rays into cones for which the aperture angles ϑ can be derived from a photograph. This experiment determines the lattice spacing corresponding to ϑ as well as its Laue indices h, k, l, and thus the lattice structure of the crystallite. The experiment P7.1.2.4 records the Debye-Scherrer pattern with an end window counter instead of X-ray film. The diffracted reflections of a fine powder sample are recorded as a function of diffraction angle. The intensity peaks in the diffraction spectrum allow the calculation of the separations of adjacent lattice planes.

Laue diagram of NaCl and Debye-scherrer photograph of $\mathrm{NaCl}($ P7.1.2.2 + P7.1.2.3)

X-RAY SCATTERING

P7.1.2.5

Digital Laue diagrams: investigating the lattice structure of monocrystals

P7.1.2.6
Digital Debye-Scherrer photography: determining the lattice plane spacings of polycrystalline powder samples

Digital Laue diagrams: investigating the lattice structure of monocrystals (P7.1.2.5)

Cat. No.	Description	No	+
554800	X-ray apparatus	1	1
554866	X-ray tube, Au	1	
5548281	X-ray image sensor	1	1
5548282	Beam stop for X -ray image sensor	1	1
5548291	Precision rail for X -ray image sensor	1	1
5548383	Pinhole collimator with Laue crystals	1	1
554861	X-ray tube, Mo		1
667091	Pestle 88 mm		1
667092	Mortar porcelain 70 mm Ø		1
666960	Powder spatula, stainless steel, 150 mm		1
6735700	Sodium chloride 250 g		1
6730520	Lithium fluoride, analytically pure, 10 g		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or x64)	1	1

X-rays are an essential tool to determine the structure of crystals. The lattice planes inside a crystal are identified by their Miller idices h, k, l and reflect the X-rays only if the Laue or Bragg conditions are fulfilled. The distribution of reflexes allows to calculate the lattice constant and crystal structure of the investigated crystal.
To create Laue diagrams of NaCl and LiF monocrystals, the bremsstrahlung of the X-ray apparatus is used in the experiment P7.1.2.5 as a "white" spectrum of X-rays. The positions of the "multicolored" diffraction spots on an X-ray image sensor behind the crystal and their intensities can be used to determine the crystal structure and the dimensions of the unit cellthrough application of the Laue condition.
The X-ray image sensor allows capturing the Laue pattern in one minute (much faster than conventional film) and the digital evaluation eases the determination of the diffraction angles on the computer.
In the experiment P7.1.2.6, Debye-Scherrer photography are produced by irradiating samples of a fine crystal powder with Mo-Kadiation. Some of the randomly oriented crystallites conform to the Bragg condition and diffract X-rays into cones for which the aperture angles ϑ can be derived from a photograph. This experiment determines the lattice spacing corresponding to ϑ as well as its Laue indices h, k, l, and thus the lattice structure of the crystallite.
The sensitive X-ray image sensor allows capturing the Debye-Scherrer pattern in one minute and the digital evaluation of the circle diameter and circle integral on the computer, if the powder sample has been carefully prepared and the diffracted rays have a correspondingly high intensity.

ELASTIC AND PLASTIC DEFORMATION

P7.1.4.1

Investigating the elastic and plastic extension of metal wires

P7.1.4.2

Investigating the elastic and plastic extension of metal wires - Recording and evaluating with CASSY

Investigating the elastic and plastic extension of metal wires - Recording and evaluating with CASSY (P7.1.4.2)

Cat. No.	Description	「	
55035	Copper resistance wire, 0.2 mm diam., 100 m	1	1
55051	Iron resistance wire, 0.2 mm diameter, 100 m	1	1
34263	Weight 50 g	18	
340911	Pulley $\emptyset 50 \mathrm{~mm}$, plug-in	1	
381331	Pointer for linear expansion	1	
34082	Double scale	1	
31404	Support clip, for plugging in	2	
30107	Simple bench clamp	2	2
30101	Leybold multiclamp	4	3
30125	Support block	3	
30126	Stand rod $25 \mathrm{~cm}, 10 \mathrm{~mm}$ Ø	3	2
30127	Stand rod $50 \mathrm{~cm}, 10 \mathrm{~mm}$ Ø	1	
30044	Stand rod, $100 \mathrm{~cm}, 12 \mathrm{~mm}$ diam.	1	1
524005 W	Mobile-CASSY 2 WiFi		1
524042	Force sensor S, $\pm 50 \mathrm{~N}$		1
524082	Rotary motion sensor S		1
31178	Tape measure $2 \mathrm{~m} / 1 \mathrm{~mm}$		1

Load-extension diagram for a typical metal wire (P7.1.4.1)

The shape of a crystalline solid is altered when a force is applied. We speak of elastic behavior when the solid resumes its original form once the force ceases to act on it. When the force exceeds the elastic limit, the body is permanently deformed. This plastic behavior is caused by the migration of discontinuities in the crystal structure.
In the experiments P7.1.4.1 and P7.1.4.2, the extension of iron and copper wires is investigated by hanging weights from them. A precision pointer indicator or the rotary motion sensor S attached to a CASSY measures the change in length $\Delta \mathrm{s}$, i. e. the extension

$$
\begin{aligned}
& \varepsilon=\frac{\Delta s}{s} \\
& s: \text { length of wire }
\end{aligned}
$$

After each new tensile load

$$
\begin{aligned}
& \sigma=\frac{F}{A} \\
& F: \text { weight of load pieces } \\
& A: \text { wire cross-section }
\end{aligned}
$$

the students observe whether the pointer or the rotary motion sensor returns to the zero position when the strain is relieved, i.e. whether the strain is below the elasticity limit σ_{ε}. Graphing the measured values in a tension-extension diagram confirms the validity of Hooke's law

$$
\begin{aligned}
& \sigma=E \cdot \varepsilon \\
& E: \text { modulus of elasticity }
\end{aligned}
$$

up to a proportionality limit σ_{p}.

Investigating the elastic and plastic extension of metal wires (P7.1.4.1)

SOLID-STATE PHYSICS CONDUCTION PHENOMENA

HALL EFFECT

P7.2.1. 1
Investigating the Hall effect in silver
P7.2.1.2
Investigating the anomalous Hall effect in tungsten

Investigating the Hall effect in silver (P7.2.1.1)

Cat. No.	Description		N
58681	Hall effect apparatus (silver)	1	
524005 W	Mobile-CASSY 2 WiFi	1	1
5240381	Combi B sensor S	1	1
50111	Extension cable, 15 pin	1	1
5240401	$\mu \mathrm{V}$ sensor S	1	1
521551	AC/DC power supply 0... $24 \mathrm{~V} / 0 . .10 \mathrm{~A}$	1	1
726890	DC-High Current Power Supply 1... $32 \mathrm{~V} / 0 . . .20 \mathrm{~A}$	1	1
56211	U-core with yoke	1	1
56031	Bored pole pieces, pair	1	1
56213	Coil, 250 turns	2	2
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm}$ Ø	1	1
30101	Leybold multiclamp	1	1
30002	Stand base, V-shaped, small	1	1
500442	Connecting lead $19 \mathrm{~A}, 100 \mathrm{~cm}$, blue	1	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	2	2
50133	Connecting lead, $32 \mathrm{~A}, 100 \mathrm{~cm}$, black	2	2
58684	Hall effect apparatus (tungsten)		1

In the case of electrical conductors or semiconductors within a magnetic field B, through which a current / is flowing perpendicular to the magnetic field, the Hall effect results in an electric potential difference

$$
U_{\mathrm{H}}=R_{\mathrm{H}} \cdot B \cdot l \cdot \frac{1}{d} \quad d: \text { thickness of sample }
$$

The Hall coefficient

$$
R_{\mathrm{H}}=\frac{1}{e} \cdot \frac{p \cdot \mu_{\mathrm{p}}^{2}-n \cdot \mu_{\mathrm{n}}^{2}}{\left(p \cdot \mu_{\mathrm{p}}+n \cdot \mu_{\mathrm{n}}\right)^{2}} \quad e: \text { elementary charge }
$$

depends on the concentrations n and p of the electrons and holes as well as their mobilities μ_{n} and μ_{p}, and is thus a quantity which depends on the material and the temperature.
The experiments P7.2.1.1 and P7.2.1.2 determine the Hall coefficient R_{H} of two electrical conductors by measuring the Hall voltage U_{H} for various currents I as a function of the magnetic field B. A negative value is obtained for the Hall coefficient of silver, which indicates that the charge is being transported by electrons. A positive value is found as the Hall coefficient of tungsten. Consequently, the holes are mainly responsible for conduction in this metal.

HALL EFFECT

P7.2.1.3

Determining the density and mobility of charge carriers in n-Germanium

P7.2.1.4

Determining the density and mobility of charge carriers in p-Germanium

P7.2.1.5
Determining the band gap of germanium

Determining the density and mobility of charge carriers in p-Germanium (P7.2.1.4)

Cat. No.	Description		+	?
586850	Base unit for Hall effect	1	1	1
586853	N -doped germanium on plug-in board	1		
56211	U-core with yoke	1	1	
56213	Coil, 250 turns	2	2	
56031	Bored pole pieces, pair	1	1	
521536	DC Power Supply $2 \times 0 \ldots 16 \mathrm{~V} / 2 \times 0 \ldots 5 \mathrm{~A}$	1	1	
521546	DC Power Supply 0...16 V/0... 5 A	1	1	2
524005 W	Mobile-CASSY 2 WiFi	1	1	1
524220	CASSY Lab 2	1	1	1
524438	Voltage sensor M, $\pm 30 \mathrm{~V}$	1	1	1
5240381	Combi B sensor S	1	1	
50111	Extension cable, 15 pin	1	1	
30002	Stand base, V-shaped, small	1	1	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	1	1	
30101	Leybold multiclamp	1	1	
500442	Connecting lead $19 \mathrm{~A}, 100 \mathrm{~cm}$, blue	1	1	
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	6	6	4
586852	P-doped germanium on plug-in board		1	
586851	Undoped germanium on plug-in board			1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1	1

The experiments P7.2.1.3 and P7.2.1.4 explore the temperature-dependency of the Hall voltage and the electrical conductivity

$$
\sigma=e \cdot\left(p \cdot \mu_{p}+n \cdot \mu_{n}\right)
$$

using doped germanium samples. The concentrations of the charge carriers and their mobilities are determined under the assuption that, depending on the doping, one of the concentrations n or p can be ignored.
In the experiment P7.2.1.5, the electrical conductivity of undoped germanium is measured as a function of the temperature to provide a comparison. The measurement data permits determination of the band gap between the valence band and the conduction band in germanium.

Hall voltage when heating up the p-Ge sample (P7.2.1.4)

ELECTRICAL CONDUCTIVITY IN SOLIDS

P7.2.2. 1
Measuring the temperaturedependency of a noble-metal resistor

P7.2.2.2
Measuring the temperaturedependency of a semiconductor resistor

Measuring the temperature-dependency of a noble-metal resistor (P7.2.2.1)

Cat. No.	Description	¢ N Ǹ ¢	N N N N
58680	Noble metal resistor	1	
55581	Electric oven for tubes, 230 V	1	1
524013	Sensor-CASSY 2	1	1
524220	CASSY Lab 2	1	1
5240673	NiCr-Ni adapter S, type K	1	1
529676	Temperature probe, $\mathrm{NiCr}-\mathrm{Ni}, 1.5 \mathrm{~mm}$, type K	1	1
524031	Current source box	1	1
502061	Safety connecting box, with earth	1	1
500614	Safety connecting lead, 25 cm , black	1	1
500621	Safety connecting lead 50 cm , red	1	1
500622	Safety connecting lead 50 cm , blue	1	1
586821	Semiconductor resistor, $5 \mathrm{k} \Omega$		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1

The temperature-dependency of the specific resistance ρ is a simple test for models of electric conductivity of conductors and semiconductors. In electrical conductors, ρ increases with the temperature, as the collisions of the quasi-free electrons from the conduction band with the atoms of the conductor play an increasingly important role. In semiconductors, on the other hand, the specific resistance decreases as the temperature increases, as more and more electrons move from the valence band to the conduction band, thus contributing to the conductivity.
The experiments P7.2.2.1 and P7.2.2.2 measure the resistance values as a function of temperature using a Wheatstone bridge. The computer-assisted CASSY measured-value recording system is ideal for recording and evaluating the measurements. For the noble metal resistor, the relationship

$$
\begin{aligned}
& R=R_{\Theta} \cdot \frac{T}{\Theta} \\
& \Theta=240 \mathrm{~K}: \text { Debye temperature of platinum }
\end{aligned}
$$

is verified with sufficient accuracy in the temperature range under study. For the semiconductor resistor, the evaluation reveals a dependency with the form

$$
\begin{aligned}
& R \propto e^{\frac{\Delta E}{2 k T}} \\
& k=1.38 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}: \text { Boltzmann constant }
\end{aligned}
$$

with the band spacing $\mathrm{E}=0.5 \mathrm{eV}$.

PHOTOCONDUCTIVITY

P7.2.3.1
Recording the current-voltage characteristics of a CdS photoresistor

Recording the current-voltage characteristics of a CdS photoresistor (P7.2.3.1)

Cat. No.	Description	¢
57802	Photoresistor LDR 05, STE 2/19	1
450511	Bulbs, $6 \mathrm{~V} / 30 \mathrm{~W}$, E14, set of 2	1
45060	Lamp housing with cable	1
46020	Condenser with diaphragm holder	1
46014	Adjustable slit	1
472401	Polarisation filter	2
46008	Lens in frame, $\mathrm{f}=150 \mathrm{~mm}$	1
46032	Optical bench with standardised profile, 1 m	1
460374	Optics rider, 90/50	6
46021	Holder for plug-in elements	1
521546	DC Power Supply 0...16 V/0... 5 A	1
521210	Transformer 6/12 V	1
531282	Multimeter Metrahit Pro	1
531303	Multimeter Metrahit X-tra	1
500422	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, blue	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	2

Photoconductivity is the phenomenon in which the electrical conductivity σ of a solid is increased through the absorption of light. In CdS, for example, the absorbed energy enables the transition of activator electrons to the conduction band and the reversal of the charges of traps, with the formation of electron holes in the valence band. When a voltage U is applied, a photocurrent $I_{\text {ph }}$ flows. The object of the experiment P7.2.3.1 is to determine the relationship between the photocurrent $I_{\text {ph }}$ and the voltage U at a constant radiant flux Φ_{e} as well as between the photocurrent I_{ph} and the radiant flux Φ_{e} at a constant voltage U in the CdS photoresistor.

SOLID-STATE PHYSICS CONDUCTION PHENOMENA

LUMINESCENCE

P7.2.4.1
Exciting luminescence through irraditaion with ultraviolet light and electrons

Exciting luminescence through irraditaion with ultraviolet light and electrons (P7.2.4.1)

Cat. No.	Description	
555618	Luminescence tube	1
555600	Tube stand	1
52170	High-voltage power supply, 10 kV	1
45115	High pressure mercury lamp	1
451195	Power supply unit for high-pressure mercury lamp	1
46979	Filter, ultra-violet	1
500611	Safety connecting lead, 25 cm , red	1
500621	Safety connecting lead 50 cm , red	1
500641	Safety connecting lead, 100 cm , red	1
500642	Safety connecting lead, 100 cm , blue	1
500644	Safety connecting lead, 100 cm , black	2

Exciting luminescence through irraditaion with ultraviolet light and electrons (P7.2.4.1)

Luminescence is the emission of light following the absorption of energy. This energy can be transmitted in the form of e.g. high-energy electrons or photons which have an energy greater than that of the emitted photons. Depending on the type of decay, we distinguish between fluorescence and phosphorescence. In fluorescence, the emission of photons fades exponentially very rapidly when excitation is switched off (i.e. about $10^{-8} \mathrm{~s}$). Phosphorescence, on the other hand, can persist for several hours.
In the experiment P7.2.4.1, the luminescence of various solids following irradiation with ultraviolet light or electrons is demonstrated. These samples include yttrium vanadate doped with europium (red fluorescent), zinc silicate doped with manganese (green fluorescent) and barium magnesium aluminate doped with europium (blue fluorescent).
Note: It is possible to recognize individual emission lines within the band spectrum using a spectrometer.

THERMOELECTRICITY

P7.2.5.1

Seebeck effect: Determining the thermoelectric voltage as a function of the temperature differential

Seebeck effect: Determining the thermoelectric voltage as a function of the temperature differential (P7.2.5.1)

Cat. No.	Description	-
55701	Thermocouples, set	1
590011	Clamping plug	2
524005 W	Mobile-CASSY 2 WiFi	1
5240401	$\mu \mathrm{V}$ sensor S	1
38234	Thermometer, $-10 \ldots+110^{\circ} \mathrm{C} / 0.2 \mathrm{~K}$	1
666767	Hotplate, $1500 \mathrm{~W}, 180 \mathrm{~mm} \emptyset$	1
664104	Beaker, DURAN, 400 ml , squat	1

Thermoelectric voltage as a function of the temperature Top: chrome-nickel/ constantan, Middle: iron/constantan, Bottom: cupper/constantan (P7.2.5.1)

When two metal wires with different Fermi energies E_{F} touch, electrons move from one to the other. The metal with the lower electronic work function W_{A} emits electrons and becomes positive. The transfer does not stop until the contact voltage

$$
\begin{aligned}
& U=\frac{W_{\mathrm{A}, 1}-W_{\mathrm{A}, 2}}{e} \\
& e: \text { elementary charge }
\end{aligned}
$$

is reached. If the wires are brought together in such a way that they touch at both ends, and if the two contact points have a temperature differential $T=T_{1}-T_{2}$, an electrical potential, the thermoelectric voltage

$$
U_{T}=U\left(T_{1}\right)-U\left(T_{2}\right)
$$

is generated. Here, the differential thermoelectric voltage

$$
\alpha=\frac{d U_{T}}{d T}
$$

depends on the combination of the two metals.
In the experiment P7.2.5.1, the thermoelectric voltage U_{T} is measured as a function of the temperature differential T between the two contact points for thermocouples with the combinations iron/constantan, copper/constantan and chrome-nickel/constantan. One contact point is continuously maintained at room temperature, while the other is heated in a water bath. The differential thermoelectric voltage is determined by applying a best-fit straight line

$$
U_{T}=\alpha \cdot T
$$

to the measured values.

SUPERCONDUCTIVITY

P7.2.6. 1
Determining the transition temperature of a high-temperature superconductor

P7.2.6.2
Meissner-Ochsenfeld effect for a high-temperature superconductor

Determining the transition temperature of a high-temperature superconductor (P7.2.6.1)

Cat. No.	Description	¢ $\stackrel{\text { N }}{ }$ Ǹ	
667553	Experiment kit Superconductor	1	
524013	Sensor-CASSY 2	1	
524220	CASSY Lab 2	1	
50145	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, red/blue, pair	2	
667551	Meissner-Ochsenfeld effect, experiment kit		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	

In 1986, K. A. Müller and J. G. Bednorz succeeded in demonstrating that the compound $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ becomes superconducting at temperatures far greater than any known up to that time. Since then, many high-temperature super-conductors have been found which can be cooled to their transition temperature using liquid nitrogen. Like all superconductors, high-temperature superconductors have no electrical resistance and demonstrate the phenomenon known as the Meissner-Ochsenfeld effect, in which magnetic fields are displaced out of the superconducting body.
The experiment P7.2.6.1 determines the transition temperature of the hightemperature superconductor $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\mathrm{x}}$. For this purpose, the substance is cooled to below its critical temperature of $T_{\mathrm{c}}=92 \mathrm{~K}$ using liquid nitrogen. In a four-point measurement setup, the voltage drop across the sample is measured as a function of the sample temperature using the computer-assisted measured value recording system CASSY.
In the experiment P7.2.6.2, the superconductivity of the $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7 \text {-x }}$ body is verified with the aid of the Meissner-Ochsenfeld effect. A low-weight, high field-strength magnet placed on top of the sample begins to hover when the sample is cooled to below its critical temperature so that it becomes superconducting and displaces the magnetic field of the permanent magnet.

Determining the transition temperature of a high-temperature superconductor (P7.2.6.1)

Meissner-Ochsenfeld effect for a high-temperature superconductor (P7.2.6.2)

DIA-, PARA- AND FERROMAGNETISM

P7.3.1. 1

Dia-, para- and ferromagnetic materials in an inhomogeneous magnetic field

Dia-, para- and ferromagnetic materials in an inhomogeneous magnetic field (P7.3.1.1)

Cat. No.	Description	「
56041	Set of rods for para- and diamagnetism	1
56211	U-core with yoke	1
56213	Coil, 250 turns	2
56031	Bored pole pieces, pair	1
521391	AC/DC power supply 0... $24 \mathrm{~V} / 5 \mathrm{~A}$	1
30002	Stand base, V-shaped, small	1
30041	Stand rod, $25 \mathrm{~cm}, 12 \mathrm{~mm} \emptyset$	2
30101	Leybold multiclamp	1
500422	Connecting lead $19 \mathrm{~A}, 50 \mathrm{~cm}$, blue	1
50146	Connecting leads $19 \mathrm{~A}, 100 \mathrm{~cm}$, red/blue, pair	1

Diamagnetism is the phenomenon in which an external magnetic field causes magnetization in a substance which is opposed to the applied magnetic field in accordance with Lenz's law. Thus, in an inhomogeneous magnetic field, a force acts on diamagnetic substances in the direction of decreasing magnetic field strength. Paramagnetic materials have permanent magnetic moments which are aligned by an external magnetic field. Magnetization occurs in the direction of the external field, so that these substances are attracted in the direction of increasing magnetic field strength. Ferromagnetic substances in magnetic fields assume a very high magnetization which is orders of magnitude greater than that of paramagnetic substances.
In the experiment P7.3.1.1, three 9 mm long rods with different magnetic behaviors are suspended in a strongly inhomogeneous magnetic field so that they can easily rotate, allowing them to be attracted or repelled by the magnetic field depending on their respective magnetic property.

[^21]
FERROMAGNETIC HYSTERESIS

P7.3.2. 1
Recording the initial magnetization curve and the hysteresis curve of a ferromagnet and iron

Recording the initial magnetization curve and the hysteresis curve of a ferromagnet and iron (P7.3.2.1)

Cat. No.	Description	「
56211	U-core with yoke	1
562115	U-core with yoke, iron	1
562121	Clamping device with spring clip	1
56214	Coil, 500 turns	2
522621	Function generator S 12	1
524013	Sensor-CASSY 2	1
524220	CASSY Lab 2	1
57720	Resistor, 10Ω, STE 2/19	1
57681	Plug-in board safety socket, 20/10	1
500624	Safety connecting lead 50 cm , black	1
500644	Safety connecting lead, 100 cm , black	7
	additionally required: PC with Windows XP/Vista/7/8/10 ($\times 86$ or $\times 64$)	1

In a ferromagnet, the magnetic induction

$$
\begin{aligned}
& B=\mu_{r} \cdot \mu_{0} \cdot H \\
& \mu_{0}=4 \pi \cdot 10^{-7} \frac{\mathrm{Vs}}{\mathrm{Am}}: \text { magnetic field constant }
\end{aligned}
$$

reaches a saturation value B_{s} as the magnetic field H increases. The relative permiability μ_{r} of the ferromagnet depends on the magnetic field strength $H_{\text {, }}$ and also on the previous magnetic treatment of the ferromagnet. Thus, it is common to represent the magnetic induction B in the form of a hysteresis curve as a function of the rising and falling field strength H. The hysteresis curve differs from the magnetization curve, which begins at the origin of the coordinate system and can only be measured for completely demagnetized material.
In the experiment P7.3.2.1, a current I_{1} in the primary coil of a transformer which increases (or decreases) linearly over time generates the magnetic field strength
$H=\frac{N_{1}}{L} \cdot I_{1}$
L : effective length of iron core
N_{1} : number of windings of primary coil
The corresponding magnetic induction value B is obtained through integration of the voltage U_{2} induced in the secondary coil of a transformer:

$$
B=\frac{1}{N_{2} \cdot A} \cdot \int U_{2} \cdot d t
$$

A : cross-section of iron core
N_{2} : number of windings of secondary coil
The computer-assisted measurement system CASSY is used to control the current and to record and evaluate the measured values. The aim of the experiment is to determine the relative permeability μ_{r} in the magnetization curve and the hysteresis curve as a function of the magnetic field strength H.

X-RAY FLUORESCENCE ANALYSIS

P7.5.1.1
Application of X-ray fluorescence for the non-destructive analysis of the chemical composition

P7.5.1.2
Determination of the chemical composition of a brass sample by X-ray fluorescence analysis

Application of X-ray fluorescence for the non-destructive analysis of the chemical composition (P7.5.1.1)

Cat. No.	Description	든	
554800	X-ray apparatus	1	1
554861	X-ray tube, Mo	1	1
554831	Goniometer	1	1
559938	X-ray energy detector	1	1
554848	Set of target alloys	1	1
524013	Sensor-CASSY 2	1	1
524220	CASSY Lab 2	1	1
524058	MCA box	1	1
50102	BNC cable, 1 m	1	1
554844	Set of targets for K-line fluorescence		1
554846	Set of targets for L-line fluorescence		1
	additionally required: PC with Windows XP/Vista/7/8/10 (x86 or $\times 64$)	1	1

[^22]X-ray fluorescence is a very useful tool for a non-destructive analysis of the chemical composition of a target alloy. When irradiating a sample with X-rays, all the different elements it contains emit characteristic X-rays due to fluorescence, which are fingerprints of every single element.
In the experiment P7.5.1.1, X-ray fluorescence is used to do qualitative analysis by identifying the substances in four alloy samples, made from chrome-nickel steel, two different kinds of brass and rare earth magnet.

In the experiment P7.5.1.2, the composition of one brass alloy is analysed quantitatively. The weight percentage of each component in the alloy is calculated from the strength of different fluorescence lines.

P7.2.6. 1

Determining the transition temperature of a high-temperature superconductor

[^23]

P8 REGISTER

α, β, γ
α radiation 2
α spectrum ... 225
β radiation
β spectrum
221, 228
ß radiation
γ radiation ... 221
γ spectrum.. 226
3
3D
A
Aberration, chromatic .. 147
Aberration, spherical ... 147
Aberration, lens.. 147
Absorption ... 181
Absorption edge ... 210-211
Absorption of β radiation .. 226
Absorption of γ radiation
221, 226 Beats
Anharmonic oscillation.. 31
Annihilation radiation .. 226
Anomalous Hall effect... 236-237
Anomaly of water.. 61
Antenna... 123
Apparent power .. 117
Archimedes' principle... 49
Astigmatism... 147
Astronomical telescope .. 148
Asynchronous motor .. 111
Atomic size... 233-234
216-217 Attenuation of X-rays ...210, 212
Attenuation of α, β and γ radiation.................................... 221
Autocollimation .. 146

B

Babinet's theorem.. 153
Balmer series ..198-199
Band gap... 237
Barrel distortions.. 147
Absortion of γ, 6
Absorption of microwaves ... 121 Bending ... 6
Absorption of X-rays ...210-211 Bending radius .. 3
Absorption spectra.. 151 Bernoulli equation... 56
Absorption spectrum.. 200 Bessel method... 146
Acceleration..13-14 Biot-Savart's law .. 101-102
AC-DC generator ... 109 Bipolar transistors.. 135
Acousto-optic modulator.. 48 Biprism .. 156
Action = reaction .. 15, 17 Birefringence ... 165, 167-168
Active power... 117 Birefringent tuner.. 183
Activity determination... 226 Black body.. 171-172
AD converter... 141 Block and tackle .. 9
Adder ... 138, 140
Additive colour mixing... 150
Adiabatic exponent... 72 Boyle-Mariotte's law... 71
Aerodynamics...54-56 Bragg reflection.. 211, 233-234
Air resistance..55-56 Braun tube .. 125
Airfoil..55-56 Break-away method .. 53
Alloy composition... 245 Bremsstrahlung.. 211
Amontons' law ... 71 Brewster angle .. 164
Ampere, definition of ..99-100 Bridge rectifier... 135
Amplifier ... 136 Building materials .. 62
Amplitude hologram..162-163 Buoyancy... 49, 56
Amplitude modulation (AM).. 119
AND-Gate...139-140
Angle of inclination ... 108
Angled projection... 20
Angular acceleration .. 21-22 Caliper gauge
Angular velocity.
21-22 Capacitance of a plate capacitor.
165 C

Calcite.
.. 3
Angular velocity... 21-22 .-Capacitance of a plate capacitor
Capacitance of a sphere 89 Counter 140
Capacitive impedance 112, 114-115 Counter tube 218
Capacitor 90-92, 112 Counting rates, determination of 219
Cavendish hemispheres 88 Coupled pendulums 32
Centrifugal and centripetal force . 23 Coupling of oscillations 32-33
Chaotic oscillation $.31 \mathrm{Cp}, \mathrm{Cv}$ 72
Characteristic radiation 211 Crest factor 117
Characteristic(s) of a diode 133 Critical point 70
Characteristic(s) of a field-effect transistor 135 Critical temperature 242
Characteristic(s) of a glow lamp 132 Cross grating 153
Characteristic(s) of a light-emitting diode 133 Crystal lattice 233-234
Characteristic(s) of a photoresistor. 239 Crystal structure 234
Characteristic(s) of a phototransistor 137 C 216-217
Characteristic(s) of a solar battery 131 Current source 131
Characteristic(s) of a transistor 135
Current transformation of a transformer 106
Characteristic(s) of a varistor 132
Characteristic(s) of a Z-diodeCushion distortionsCharge carrier concentration237
Charge distribution 88
Charge, electric 81-83, 124-126
Chromatic aberration 147
Circular motion 21-22
Circular polarization 36, 165
Circular waves 37
Cloud chamber 222
Coercive force 244
Coherence 155, 159
Coherence length 159
Coherence time159 Decimeter waves
147
Curvature of image147
CW value 55
D
Coil. 113
Coincidence 226, 230Collision.15-17
Colour filter 151
Colour mixing 150
Coma147 Density measuringComparator138
Composition of forces4Compton effect211, 227
Compton scattering 215
Condensation heat 68
Conductivity 237-238
Conductor, electric. .88, 93-95, 238-239
Conoscopic ray path 168
Conservation of angular momentum
7 Density of liquids. 4
Density of solids 4
Detection of radioactivity 218Conservation of energy
Conservation of linear momentum 15, 1715, 17, 22, 26
207, 212
Detection of X -rays
199
Deuterium spectrum
Constant-current source 131
Constant-voltage source 131
Cork-powder method 41
Coulomb's law82-83 Diffraction at a multiple grating38, 45, 153-154
140
D-Flip-Flop
22 Dielectric constant 243 243
Dielectric constant 90-91
Dielectric constant of water 119
Differentiator 138
Diffraction at a crossed grating. 153
Diffraction at a double slit 38, 45, 121, 153-154
Diffraction at a grating 38, 45, 153
Diffraction at a pinhole diaphragm 153 Electric energy 67, 116-117
Diffraction at a post. 153 84-87, 92
Electric field
Diffraction at a single slit 38, 45, 121, 153-154
Diffraction at a standing wave
48 Electric motor. 109, 111 110-111
Electric generator.
Diffraction of electrons 197 Electric oscillator circuit 197 Electric oscillator circuit 47, 114 47, 114
Diffraction of light 153-154 Electric potential 85
Diffraction of microwaves 121 Electric power 116-117
Diffraction of ultrasonic waves 45 Electric work. 116-117
Diffraction of water waves. 38 Electrical machines 109-110
Diffraction of X-rays 211 97
Electrolysis
Diode. 133-135
Diode characteristic 133
Diode laser 184
Directional characteristic. 119
Directional characteristic of antennas 123
Dispersion of glasses
Dispersion of glasses 149 149
Dispersion of liquids 149
Distortions 147
Doping 237
Doppler effect
Doppler effect 37, 46 37, 46
Doppler effect, optical
Doppler effect, optical 188
212
Dosimetry
Dosimetry 208, 212
Double mirror
Double mirror 56
32
Double pendulum
Double pendulum
38, 45, 121, 153-154
38, 45, 121, 153-154
Double slit, diffraction at.
Double slit, diffraction at. 185
Dualism of wave and particle 197
Duane and Hunt's law 211
Dynamic pressure 54 Energy, conservation of. 15, 17, 22, 26-1, 14-15, 17, 22, 66
Energy, mechanical 26
E Energy-band interval 237
Equilibrium 8
E , determination of 193 8
Equilibrium of angular momentum
E / m, determination of126, 194 Equipotential lines84
Earth inductor 108 Equipotential surface
85
85Earth's magnetic field108
Echo sounder. 44
Edge absorption211 Excitation of
ESR 205
Evaporation heat 68Effective voltage117
Efficiency of a heat pump 77
Efficiency of a hot air engine 75
Efficiency of a solar collector 63
Efficiency of a transformer 106-107
Einstein coefficients. 181
Elastic collision 15, 17
Elastic deformation. 235
Elastic rotational collision
203-204
Excitation of atoms 59
Expansion coefficientElastic strain constant
22 Faraday effect..
6 Faraday cup

..... 182

..... 182

..... 182

..... 182

F

F

F

F

Fabry Perot.

Fabry Perot.

Fabry Perot.

Fabry Perot. 161 161 161 161

Fabry-Perot Interferometer

Fabry-Perot Interferometer

Fabry-Perot Interferometer

Fabry-Perot Interferometer 50-51 50-51 50-51 50-51

Falling-ball viscosimeter

Falling-ball viscosimeter

Falling-ball viscosimeter

Falling-ball viscosimeter 97 97 97 97
Faraday constant.
Faraday constant.
Faraday constant.
Faraday constant. 169 169 169 169 88 88 88 88 F F F F
Electric charge 81-83, 88, 124-126 Feedback
Electric conductor .88, 93-95, 238-239
Electromagnet. 98
Electromagnetic oscillations. 47, 118
Electrometer 81
Electron charge. 193
Electron diffraction 197
Electron holes 237, 239
Electron spin 205-206
Electron spin resonance 205
Electrostatic induction 81, 88
Electrostatics 81 1
Elliptical polarization
Emission. 165 181
Emission spectra 200, 202
Energy loss of α radiation 225
Energy spectrum of X-rays 211-212
Energy, electrical 67, 116-117
Energy, heat 66-67Energy, mechanical85
FET. 135 Generator, electric 109, 111
Fiber cleaving 187 Geometrical optics 145-148
Fiber laser 186 Glassfiber 187
Fibre 151 Glowing layer 127
Field effect transistor 135-136 Golden rule of mechanics 9-10
Fieldmill. 85,92 Graetz circuit 134
Fine beam tube 194 Grating spectrometer 178-179
Fine structure 213-214, 225 Grating, diffraction at a 38, 45, 153
Fine structure, X-ray 213-214 Gravitation torsion balance according to Cavendish 5
Fixed pulley 9 Gravitational acceleration 18-19, 27-28
Flame colouration 202 Gravitational constant 5
Flame probe 85 Gyroscope 24
Fletcher's trolley 12 Gyroscope, laser. 189
Flip-Flop 140
Fluorescence 151, 240
Fluorescent screen 207, 209
Focal point, focal length 146
Force 6-9, 11-12
Force along the plane 10
Force in an electric field 86-87
Force normal to the plane 10
Force, measuring on current-carrying conductors. 99-100
Forced oscillation 30-31
Foucault-Michelson method 173
Fourier transformation 47
Franck-Hertz experiment 203-204
Fraunhofer lines 202
Free fall 18-20
Frequency $27,30-41,44-47,118-119,121$
Frequency doubling 185
Frequency modulation (FM) 119
Fresnel's biprism 156
Fresnel's laws 164
Fresnel's mirror 156
Friction 10-1
Friction coefficient 11
Full-wave rectifier 135
H
H α-line 198-199
H , determination of 195-196, 211
Hagen-Poiseuille's law 52
Half-life. 112-113, 220
Half-shadow polarimeter 166
Half-wave rectifier 135
Hall effect 236-237
Hall voltage 236-237
Harmonic oscillation. 27-31
Heat capacity 65
Heat capacity, specific. 65
Heat conduction 62
Heat energy 66-67
Heat engine 74-76
Heat equivalent, electric 67
Heat equivalent, mechanical 66
Heat insulation 62
Heat pump 75, 77
Helical spring 6, 29
Helical spring according to Wilberforce 33
Helical spring waves 34
Helium Neon Laser. 183
Helmholtz coils 102
Helmholtz configuration 102
High voltage 107
Galilean telescope 148
Gas discharge 127
Gas discharge spectra 202
Gas elastic resonance apparatus 72
Gas laws 71
Gas thermometer.71 Hot-air engin
242
242
Hologram 162-163
Holographic grating 179, 199, 201
Homogeneous electric field 87Gay-Lussac's law6, 235
75-76
71 Huygens' principle71 Huygens' principleGeiger-Müller counter tube218
Generator circuits 136
Hydrogen spectrum 19937
Hysteresis 244

REGISTER

I
Ideal gas 71
Image charge 86, 89
Image distortion 147
Impedance 112-114
Implant model 207
Inclined plane 10
Independence principle 20
Induction 103-105
Inductive impedance 113-115
Inelastic collision 15, 17
Inelastic electron collision 203-204
Inelastic rotational collision 22
Integrator. 138
Interference 155, 182, 229
Interference of light 156
Interference of microwaves 121
Interference of ultrasonic waves 45
Interference of water waves 38
Interferometer 158-160, 180
Interferometer, Fabry-Perot 161
Interferometer, Mach-Zehnder 180
Interferometer, Michelson 180
Internal resistance 96, 13
Intrinsic conduction 237
Inverse-square law of distance 221
Inverting operational amplifier. 138
Ion dose rate. 208
Ionization chamber. 208
IR position detector 5
Isoelectric lines 84
Isotope splitting 199
JJK-Flip-Flop140
Joule-Thomson effect 73
K
K α-line
.211
K-edge 210-211
Keplerian telescope 148
Kerr cell167 Longitudinal laser modes
167 Longitudinal waves................. Kerr effect 34
Kinetic energy 14 Loose pulley 9
Kinetic theory of gases 71-72 Luminescence 240
Kirchhoff's law of radiation 171-172 Luminous intensity. 170
Kirchhoff's laws 94-95 Luminous zone 127

M

Machine109-111Machine(s), electrical 111
Machine(s), simple 9-10
Mach-Zehnder-Interferometer 160
Magnetic field of a coil 101-102
Magnetic field of Helmholtz coils 102
Magnetic field, earth. 108
Magnetic focusing 124
Magnetization curve 244
Magnets 98
Magnifier 148
Maltese-cross tube 124
Malus' law 164
Mathematical pendulum 27
Maxwell measuring bridge 115
Maxwell's wheel 26
Measuring bridge, Maxwell 115
Measuring bridge, Wheatstone 94-95
Measuring bridge, Wien 115
Measuring range, expanding 96
Mechanical energy 9, 14-15, 17, 22, 66
Meissner-Ochsenfeld effect 242
Melde's law 36
Melting heat 68
Mercury spectrum 201
Metallic conductor 238
Michelson interferometer 158-159, 180, 229
Micrometer screw 3
Microscope 148
Microwaves 121-122
Millikan experiment 193
Mixing temperature 64
Mobility of charge carriers 237
Mode locking 186
Modulation of light. 168
Modulus of elasticity
Mollier diagram 77
Moment of inertia 25
Moseley's law 211-212
Motions with reversal of direction 14
Motions, one-dimensional 12, 14
Motions, uniform 12, 14, 21-22
Motions, uniformly accelerated 12, 14, 21-22
Motor, electric. 110-111
Multiple slit, diffraction at 38, 45, 153-154
Multiplexer 140
Muon 230

N

Nd:YAG Laser 185
N -doped germanium 237
Newton rings 157
Newtonian liquid 51-52
Newton's third law. 16
NMR 224
Non-inverting operational amplifier 138
Normal Hall effect 236-237
Normal Zeeman effect 206
NTC resistor 132
Nuclear magnetic resonance 224
Nuclear spin 224
Nuclear structure 225
Nutation 24
0
Ohmic resistance 93-96
Ohm's law 93
One-sided lever 8
Operational amplifier 138
Optical activity 166
Optical analogon 197
Optical pumping 181
Optical resonator 182
Optical transmission line 137
Optoelectronics 137
Orbital spin. 206
OR-Gate 139-140
Oscillation of a string 40
Oscillation period 27, 29-33, 72, 118
Oscillations. 27-33, 40, 47
Oscillator 136
Oscillator circuit 47, 114
P
Parallel connection of capacitors 90
Parallel connection of resistors 94
Parallelogram of forces 7
Paramagnetism 243
Paths of particles 222
Path-time diagram 12, 14, 21
P-doped germanium 237
Peak voltage 117
Pendulum, amplitude 28
Pendulums, coupled 32
Pendulums, mathematical and physical 27

REGISTER

Performance number 77 R
Permanent magnets. 98
Perrin tube 125
Phase hologram 162-163
Phase transition 68-70
Phase velocity 36-37
Phosphorescence 240
Photoconductivity 239
Photodiode 137
Photoelasticity 165
Photoelectric effect 195-196
Photoresistor 132, 239
Phototransistor 137
Physical pendulum 27-28
Pinhole diaphragm, diffraction at 153
Planck's constant 195-196, 211
Plastic deformation 235
Plate capacitor 90-92
PMMA fibre 151
Pockels cell 168
Pockels effect 168
Poisson distribution 219
Polarimeter 166
Polarity of electrons 125
Polarization of decimeter waves 119
Polarization of light 164-169
Polarization of microwaves 121
Post, diffraction at a 153
Potental energy 26, 31
Potentiometer 94
Power plant generator 109
Power transmission of a transformer 107
Precession 24
Prism spectrometer 177
Prism, Littrow 183
Projection parabola 20
Propagation of electrons 124
Propagation of water waves 37
Propagation velocity of voltage pulses 174
Propagation velocity of waves 35-37
PTC resistor 132
PV diagram 76
Pyknometer 4
0
Quantum eraser 229
Quantum nature 162, 164-165, 171-1
Quantum nature of charges193
Quartz, right-handed and left-handed polarization 166
Radiant flux density 170
Radioactive dating 225
Radioactive decay 220
Radioactivity. 218-219
Reactance 112-114
Reactive power 117
Real gas. 70
Recoil 17
Rectification 134
Reflection of light 145
Reflection of microwaves 121
Reflection of ultrasonic waves 44
Reflection of water waves 37
Reflection spectra 152
Reflection, law of. 37, 44, 145
Refraction of light 145
Refraction of microwaves 121
Refraction of water waves 37
Refraction, law of 37, 145
Refractive index $37,149,160,164,175-176$
Remanence. 244
Resistance 93
Resistors, special 132
Resonance 30, 114
Resonance absorption 205
Resonator, Laser 183, 185
Reversing pendulum 27-28
Revolving-field generator 109,111
Ring laser 186, 189
Rocket principle 17
Rolling friction 11
Rotating the plane of polarization 166, 169
Rotating-mirror method 173
Rotational motion 21
Rotational oscillation 30-31
Rotor 109-111
Rüchardt 72
Rutherford scattering 223
Rydberg constant 211
S
Saccharimeter 166
Sagnac Interferometer 189
Scattering of γ quanta 227
Scintillation counter 226
Second Harmonic generation 185
Seebeck effect 241
Self-excited generator 109 Stirling process 75-76
Self-maintained gas discharge 127 Straight waves 37
Semiconductor detector 225 String waves 34
Semiconductors 238 Subtractive colour mixing 150
Series connection of capacitors 90 Subtractor 138
Series connection of resistors 94 Sugar solution, concentration of 166
SHG 185 Superconductivity 242
Shift register 140 Superpositioning principle 20
Simple machines 9-10 Surface tension 53
Single slit, diffraction at 38, 45, 121, 153-154
Synchronous motor 110-111
Slide gauge. 3
Sliding friction. 11
Slit, diffraction at $38,45,121,153-154$
Snellius' law 37, 145 Telescope 148
Sodium D-lines 178 Temperature 64
Solar battery 131 Temperature, critical 242
Solar collector 63 Temperature variations 62
Solid state Laser 181 Terrestrial telescope 148
Sound 47 Thermal emission in a vacuum 125
Sound, speed of .54 Thermal expansion of liquids 60
Sound waves 39, 41-43 Thermal expansion of solid bodies 59
Sound, velocity of in air .42 Thermal expansion of water 61
Sound, velocity of in gases 42 Thermodynamic cycle 75-77
Sound, velocity of in solids 43 Thermoelectric voltage 241
Spatial coherence 155 Thermoelectricity 241
Special resistors 132 Thomson tube 126
Specific conductivity 238 Thomson's equation 118
Specific electron charge 126, 194, 206 34, 36
Specific heat. 65 Three-phase generator
Specific resistance.93, 238 Three-phase machine111
Spectra, absorption 151 Three-pole rotor 110111
152 Time constant L/R Spectra, reflection 113
Spectrometer 151-152, 177, 198-199, 202 Time constant RC. 112
Spectrum 177, 200 Tomography 216-217
Speech analysis 47 Torsion collision 22
Speed of light 187 Torsion pendulum, Pohl 30-31
Speed of sound .54 Total pressure 54
Spherical aberration 147 Total reflection. 145
Spherometer 3 Total reflection of microwaves 121
Spin .205-206, 224 Transformer 106-107
Spring 6 Transformer under load 106
Spring pendulum 29 Transistor 135-136
Standing wave. 34, 38, 41, 120-122 Transit time measurement 174
Standing-wave ratio . 122 Transition temperature 242
Static friction 10-11 Transmission hologram 163
Static pressure 54 Transmitter 119, 121
Stationary-field generator 109, 111 Transversal waves. 34
Stator 109-111 Tuning fork 39
Stefan-Boltzmann's law 171,172 Two-beam interference $.38,45$
Steiner's law 25 Two-pole rotor 110
Two-pronged lightning rod
Two-sided leverTyndall effect164
U
Ultrasonic waves 44-46
Ultrasound 46, 48
Ultrasound in liquidsUniform acceleration
Uniform motion 12, 14, 21-22 X-ray fine structure
Universal motor Universal motor
Vapour pressure 69
VelocityVelocity filter for electrons
Venturi tube 54
Verdet's constant 169
Vernier 3
Viscosity 50-5
Voltage balance 86-87
Voltage divider 94
Voltage pulse 103
Voltage source 131
Voltage transformation in a transformer 106
Voltage-current characteristic 133, 135
Volume flow 54
Volume measurement 4
Volumetric expansion 60
Volumetric expansion coefficient 60
Vowel analysis 47
W
Water 61, 119
Water waves 37-38
Wave machine 35
Waveguide 122
Wavelength 34-37, 40-41, 158-159
Waves 34-47, 119-123, 153-154, 156-160, 162-163
Waves, longitudinal 34
Waves, transversal 35
Wheatstone measuring bridge 94-95
Wheel and axle 8
White light reflection hologram 162
Wien measuring bridge 115
Wilberforce, helical spring 33
Wilson cloud chamber 222

10748
12, 14, 21 X-ray contrast medium
12, 14 X-ray tomography
-rays

XOR-Gate.

XOR-Gate.

XOR-Gate.

XOR-Gate. 139, 140 139, 140 139, 140 139, 140 209, 234 209, 234 209, 234 209, 234 207 207 207 207 207

110 X-ray fluorescence

110 X-ray fluorescence

110 X-ray fluorescence

110 X-ray fluorescence

110 X-ray fluorescence 213-214 213-214 213-214 213-214 213-214 212, 245 212, 245 212, 245 212, 245 212, 245

X-ray photography

X-ray photography

X-ray photography

X-ray photography 207, 209 207, 209 207, 209 207, 209
X-ray scattering
X-ray scattering
X-ray scattering
X-ray scattering 215 215 215 215
X-ray spectra
X-ray spectra
X-ray spectra
X-ray spectra 212, 245 212, 245 212, 245 212, 245 233-234 233-234 233-234 233-234 233-234 216-217 216-217 216-217 216-217
X
X
X
X
X-ray
X-ray
X-ray
X-ray 207-212, 233-234, 245 207-212, 233-234, 245 207-212, 233-234, 245 207-212, 233-234, 245 207-212, 233-234, 245126 X-rays
Wind speed 54
8 Wind tunnel 56
Work, electrical 67, 75-76, 116-117
Work, mechanical 9-10, 14, 66, 75-76
Y
Young's experiment $38,45,121,153-155$
ZZ-diode133, 134
Zeeman effect 206

SIGN UP TODAY FOR OUR FREE NEWSLETTER!

- Latest information about new products and trends
- Inspirations for teaching
- Selected choice of experiments
- Up-to-date information about products and solutions
- Exclusive offers and promotions

https://info.ld-didactic.de/newsletter-subscription

FOLLOW US!

 - YouTube

Visit our YouTube channel to watch videos of our products, solutions, experiments and more.

NOBEL PRIZE LAUREATES

LD EXPERIMENTS

The LD DIDACTIC offers various Nobel Prize experiments. Discover a selection of experiments enabling students to learn and comprehend about the outstanding contributions of the nobel prize laureate.

1901

W. C. Röntgen (1845-1923, Germany)

Discovery of the remarkable rays subsequently named after him (X-rays)

P6.3.3.1
Bragg reflection: diffraction
of X-rays at a monocrystal
PAGE 207

1923 R. A. Mililizan (asse- vasu, use)

Work on the elementary charge of electricity

1985 K. von Klitzing (1943, Germany)

Discovery of the quantized Hall effect

P7.2.1.3
Determining the density and mobility of charge carriers in n-Germanium

P5.3.4.2
Determining the wavelength of the light of an $\mathrm{He}-\mathrm{Ne}$ laser using a Michelson interferometer

PAGE 158

1908 E. Rutherford (1871-1931, New Zealanc)

Investigations into the disintegration of the elements

2009 Ch. K. Kao (1933-2018, China)

Achievements concerning the transmission of light in fibres for optical communications

> P5.8.7.3
> Glass fibre optics

PAGE 187

LEYBOLD EDUCATION EXPERTS ALL OVER THE WORLD \&t JUST AROUND THE CORNER

LD DIDACTIC is represented by education experts worldwide.
They are available to advise you on our products and experiment set-ups or to provide offers or answer other questions you may have.

TO FIND THE RESPONSIBLE EDUCATION EXPERT FOR YOUR REGION, SCAN OR CODE OR CLICK ON THE LINK.

SEND ME AN OFFER

GET YOUR INDIVIDUAL OFFER QUICK AND EASY

YOU CAN SELECT FROM OVER 10,000 PRODUCTS AND OVER 2,500 EXPERIMENT SET-UPS.

1. Visit our webshop at http://www.leybold-shop.com
2. Search for your required product or experiment.
3. Place the selected product or experiment in the shopping cart by clicking on the button "Add to product list".
4. Go to the product cart and press the button "Send me an offer". Fill in the form and press "Send".

You will be contacted by our Education Experts.

Domeme

CONTACT

Systèmes Didactiques sast
 Equipement pour l'enseignement expérimental, scientifique et technique
 www.systemes-didactiques.fr

Systèmes Didactiques
Savoie Hexapole - Actipole 3 - rue Maurice Herzog
F 73420 Viviers du Lac
Tél : 0456428070 Fax : 0456428071
xavier.granjon@systemes-didactiques.fr

Génie Mécanique, Génie Thermique, Génie des Procédés, Mécaniques des fluides,
Physique, Chimie, Modèles anatomiques et végétaux, Microscopes, SVT, Génie électrique, Automatismes, Régulation,Télécommunications

Energies renouvelables, Solaire, Piles à Hydrogène, Mobilier

WWW.LD-DIDACTIC.COM

[^0]: l : moment of inertia of torsion pendulum

[^1]: * additionally recommended

[^2]: * additionally recommended

[^3]: Relative density of water as a function of the temperature ($\mathrm{P} 2.1 .3 .1-2$)

[^4]: Pressure-dependency of the volume at a constant temperature (P 2.5 .2 .1)

[^5]: Measuring charges with the electrometer amplifier (P3.1.1.2)

[^6]: Induced voltages of a moving magnet (P3.4.1.1)

[^7]: Induction voltage in a moved conductor loop (P3.4.2.1).

[^8]: * additionally recommended

[^9]: is also referred to as reactive power in this case.

[^10]: Reflectivity of different materials against the wavelength (P5.2.5.1)

[^11]: N : number of illuminated slits

[^12]: Transit times of light at different distances (P5.6.3.3)

[^13]: * additionally recommended

[^14]: * additionally recommended

[^15]: Franck-Hertz curve for mercury (P6.2.4.1)

[^16]: X-ray image of one of the testobjects (P6.3.1.12)

[^17]: Bragg spectrum of the tungsten anode (P6.3.6.5)

[^18]: Measured and calculated Poisson distribution Histogram: $h(n)$, curve: $N \cdot w B(n)$ (P6.4.2.1)

[^19]: * additionally recommended

[^20]: Count rate distribution for the muon detector oriented in different directions (P6.6.2.1)

[^21]: Placement of a sample in the magnetic field (P7.3.1.1)

[^22]: X-Ray fluorescence spectrum of a brass sample (P7.5.1.2)

[^23]: For more information on this experiment, go to page 242

